首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of thio‐containing poly(ether ether ketone) (PEESK) polymers was synthesized by the introduction of thio groups from 4,4′ thiodiphenol (TDP) into the poly(ether ether ketone) (PEEK) structure via reaction between the phenol and aromatic fluoride groups. The effect of the thio groups on the properties of the PEESK materials was investigated. Differential scanning calorimetry (DSC) analysis and X‐ray diffraction (XRD) patterns show a depression in the crystallinity of the PEESKs with incorporation of the content of thio groups in the backbones. The crystalline structure was identified as an orthorhombic structure with lattice constants of a = 7.52 Å, b = 5.86 Å and c = 10.24 Å for all crystallizable PEESKs. The crystalline structures of the thio‐containing PEEK polymers were the same as that of the neat PEEK, which means the thio‐containing block in the whole thio‐containing PEEK molecule is almost excluded from the crystalline structure and the crystals are completely formed by ‘non‐thio’ blocks only. Due to the glass transition temperature (Tg) and melting temperature (Tm) depression with increase in the TDP content in the reaction system, the processability of the resultant thio‐containing PEEKs could be effectively improved. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
The miscibility and crystallization behavior of poly(ether ether ketone ketone) (PEEKK)/poly(ether imide) (PEI) blends prepared by melt‐mixing were investigated by differential scanning calorimetry. The blends showed a single glass transition temperature, which increased with increasing PEI content, indicating that PEEKK and PEI are completely miscible in the amorphous phase over the studied composition range (weight ratio: 90/10–60/40). The cold crystallization of PEEKK blended with PEI was retarded by the presence of PEI, as is apparent from the increase of the cold crystallization temperature and decrease of the normalized crystallinity for the samples anealed at 300°C with increasing PEI content. Although the depression of the apparent melting temperature of PEEKK blended with PEI was observed, there was no evidence of depression in the equilibrium melting temperature. The analysis of the isothermal crystallization at 313–321°C from the melt of PEEKK/PEI (100/0, 90/10, and 80/20) blends suggested that the retardation of crystallization of PEEKK is caused by the increase of the crystal surface free energy in addition to the decrease of the mobility by blending PEI with a high glass transition temperature. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 769–775, 2001  相似文献   

3.
2,6‐Bis(β‐naphthoxy)benzonitrile (BNOBN) was synthesized by reaction of β‐naphthol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone (NMP) in the presence of KOH and K2CO3. Poly(ether ketone ether ketone ketone)(PEKEKK) /poly(ether ether ketone ketone) (PEEKK) copolymers containing naphthalene and pendant cyano groups were obtained by electrophilic Friedel‐Crafts polycondensation of terephthaloyl chloride (TPC) with varying mole proportions of 4,4′‐diphenoxybenzophenone (DPOBP) and 2,6‐bis(β‐naphthoxy)benzonitrile (BNOBN) using 1,2‐dichloroethane (DCE) as solvent and NMP as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FTIR, DSC, TG, and WAXD. The results indicated that the crystallinity and melting temperature of the polymers decreased with increase in concentration of the BNOBN units in the polymer, the glass transition temperature of the polymers increased with increase in concentration of the BNOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 536°C in N2 atmosphere. The copolymers have good resistance to acidity, alkali, and organic solvents. Because of the melting temperature (Tm) depression with increase in the BNOBN content in the reaction system, the processability of the resultant coplymers could be effectively improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

5.
The synthesis of a novel chloro monomer containing the 1,2‐dibenzoylbenzene moiety was described. The chloro monomer was reacted with 4‐(4‐hydroxyphenyl)‐1(2H)‐phthalazinone compound in the presence of excess anhydrous potassium carbonate in an aprotic solvent (Sulfolane), and high molecular weight amorphous poly(aryl ether ketone ketone) was synthesized. The polymers with high glass transition temperature were soluble in solvents such as chloroform and nitrobenzene at room temperature and easily cast into flexible, colorless, and transparent films. The 5% weight loss of the polymers was >400 °C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1487–1492, 2001  相似文献   

6.
A series of modified poly(ether ether ketone) (PEEK) polymers were synthesized by introduction of addition ether groups from dihydroxydiphenyl ether (DHDE) into the PEEK structure. The inherent viscosity of the DHDE-modified PEEK increased with reaction time at 320 °C. DSC thermograms showed the melting points of the obtained PEEK decreased with the increase of the DHDE content in the backbone. The degradation temperature (Td) was slightly decreased by the introduction of DHDE. The crystallinity as measured via the X-ray diffraction (XRD) increases with the introduction of DHDE into the modified PEEK. The crystalline structure was identified as an orthorhombic structure with lattice constants a = 7.72 Å, b = 5.86 Å, and c = 10.24 Å. Due to the glass transition temperature (Tg) and the melting temperature (Tm) decreasing with the increase of the DHDE content in the reaction system. the processability of the resultant PEEK could be improved through this DHDE modification.  相似文献   

7.
The effect of thermal history on the orientation and relaxation behavior of blends of polystyrene with poly(vinyl methyl ether) (PS/PVME) has been studied using polarization modulation infrared linear dichroism (PM-IRLD) and differential scanning calorimetry (DSC). DSC shows that miscible PS/PVME blends containing 70% of PS can be physically aged at temperatures above their mean glass transition temperature (Tg). PM-IRLD measurements reveal that both components become more oriented upon stretching at 51 °C (8 °C above Tg) if the sample is aged at the deformation temperature prior to stretching. Room-temperature aging can also lead to an increased orientation if the heating time at 51 °C is kept short. Moreover, PS and PVME develop a larger orientation in phase-separated blends than in miscible ones, and their relaxation is hindered. The results have been interpreted considering the morphology of the samples, including the presence of concentration fluctuations in miscible blends, and the effect of the local environment on the rigidity of the chains.  相似文献   

8.
The synthesis of novel poly(ether ether ketone ketone)s containing a lateral group via the random copolymerization of 4,4′‐biphenol, tert‐butylhydroquinone and 1,4‐bis(p‐fluorobenzoyl)benzene is described. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and polarized optical microscopy (POM) observation. The results showed that the thermotropic liquid‐crystalline properties were achieved in the copolymers containing 30 mol% and 50 mol% tert‐butylhydroquinone, which have relatively lower melting temperatures due to the copolymerization effect. Both the crystalline–liquid‐crystalline transition (Tm) and the liquid‐crystalline–isotropic phase transition (Ti) were observable in the DSC thermograms, while the biphenol‐based poly(aryl ether ketone) has only one melting transition. The hydroquinone‐based polymer was shown to be amorphous. Thermogravimetric analysis (TGA) results showed that these copolymers are all high‐temperature resistant with higher glass transition temperature between 147 and 149 °C, and higher decomposition temperature Td in the range 480–520 °C. © 2000 Society of Chemical Industry  相似文献   

9.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

10.
Poly(aryl ether ketone)s (PAEKs) are a class of high‐performance engineering thermoplastics known for their excellent combination of chemical, physical and mechanical properties, and the synthesis of semicrystalline PAEKs with increased glass transition temperatures (Tg) is of much interest. In the work reported, a series of novel copolymers of poly(ether ketone ketone) (PEKK) and poly(ether amide ether amide ether ketone ketone) were synthesized by electrophilic solution polycondensation of terephthaloyl chloride with a mixture of diphenyl ether and N,N′‐bis(4‐phenoxybenzoyl)‐4,4′‐diaminodiphenyl ether (BPBDAE) under mild conditions. The copolymers obtained were characterized using various physicochemical techniques. The copolymers with 10–35 mol% BPBDAE are semicrystalline and have markedly increased Tg over commercially available poly(ether ether ketone) and PEKK due to the incorporation of amide linkages in the main chain. The copolymers with 30–35 mol% BPBDAE not only have high Tg of 178–186 °C, but also moderate melting temperatures of 335–339 °C, having good potential for melt processing. The copolymers with 30–35 mol% BPBDAE have tensile strengths of 102.4–103.8 MPa, Young's moduli of 2.33–2.45 GPa and elongations at break of 11.7–13.2%, and exhibit high thermal stability and good resistance to organic solvents. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The physical form of polymers is often important for carrying out subsequent processing operations. For example, fine powders are desirable for molding and sintering compounds because they consolidate to produce void free components. The objective of this work is to prepare fine polymeric particulates suitable for processing into fiber reinforced polymer matrix composites. Micron size particles of poly(ether ether ketone) (PEEK) were prepared by rapidly quenching solutions of these materials. PEEK pellets were dissolved at temperatures near the PEEK melting point in a mixture of terphenyls and quaterphenyls; then the solution was quenched to a temperature between the Tg and Tm (≈ 225°C) by adding a room temperature eutectic mixture of diphenyl ether and biphenyl. A supersaturated, metastable solution of PEEK resulted, causing rapid nucleation. Fine PEEK particles rapidly crystallized from this solution. The average particle size was measured using transmission electron microscopy, atomic force microscopy, and by light scattering of aqueous suspensions which had been fractionated by centrifugation. The average particle diameter was about 0.6 μm. Three dimensional photomicrographs obtained via atomic force microscopy showed some aggregates in the suspensions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1571–1578, 1997  相似文献   

12.
聚芳醚砜酮纤维的热性能   总被引:1,自引:0,他引:1  
采用DSC、TG测定了含联苯结构聚芳醚砜酮 (PPESK)纤维的热性能 ,结果表明 ,纤维的玻璃化温度随砜酮比的增大而提高 ,纤维的起始分解温度大于 463℃。当砜酮比为 15 / 85 ,5 0 / 5 0 ,75 / 2 5时 ,纤维的玻璃化温度分别为 2 5 7.62 ,2 78.64 ,2 79.71℃ ;热分解活化能分别为 15 0 .8,2 19.9,195 .5kJ/mol;热分解反应级数分别为 1,1.76,1级  相似文献   

13.
采用流延法制备了聚醚砜(PES)含量不同的PES/磺化聚醚醚酮(SPEEK)共混膜。PES与SPEEK具有良好的相容性。所制备PES/SPEEK共混膜的含水率、溶胀度和甲醇透过系数均随PES含量的增加而降低。虽然共混膜的质子传导性能有所降低.但阻醇性能和溶胀性能提高,这说明PES/SPEEK共混膜是一种很好的直接甲醇燃料电池用固体高分子电解质膜材料。  相似文献   

14.
Effects of physical aging on the submicroscopic structure and dynamic mechanical properties of amorphous poly(ether sulfone) copolymer film were studied by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and electron‐microscopy measurements. Heat flow responses were measured after annealing the amorphous samples obtained, by quenching the melt into an ice‐water bath close to but below the glass transition temperature. The extent of aging is related to the supercooling from the glass transition temperature and to the aging time. The activation energy of the aging process was estimated by the Williams–Watt expression (Williams and Watts, Trans Faraday Soc 1970, 66, 80). A systematic study of the influence of aging on the dynamic mechanical properties of poly(ether sulfone) copolymer has also been made. During isothermal annealing, the increase of the temperature of tan δ peak for the α and β′ relaxation with aging time has been observed. The aging in the zone of the β peak has also been investigated and an interpretation of the results was proposed on the basis of foregone theories. The result of electron‐microscopy investigation indicates that poly(ether sulfone) copolymer has formed a local order structure during the physical aging. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 530–534, 2006  相似文献   

15.
The mechanical properties of wollastonite-filled phenolphthalein poly-(ether ketone) (PEK-C) composites have been studied at room temperature and 200°C. The dispersion of wollastonite particles in PEK-C matrix were investigated by means of scanning electron microscope. The modulus and strength of the composites increased with filler content. The reinforced effect of wollastonite on PEK-C is more marked at elevated temperature. The glass transition temperature of the composites is higher than that of PEK-C and is independent of filler content. The restriction effect of filler particles on the molecular mobility of the polymer matrix should be attributed to the reinforcement. © 1997 John Wiley & Sons, Inc. J Appl Polym 65: 649–653, 1997  相似文献   

16.
Bulk condensations of 4,4′-difluorobenzophenone and various silylated bisphenols were carried out at 220°–320°C, with caesium fluoride as catalyst. Silylated bisphenol-A, tetramethylbisphenol-A, 1,1-bis(4-hydroxyphenyl)cyclohexane or 4,4′-dihydroxydiphenylsulphone as monomers and glassy polymers were soluble in several organic solvents. Their glass transitions were determined by differential scanning calorimetry (d.s.c.) and their number molecular weights (M?n) determined by means of vapour pressure osmometry. Mn's up to 10 000 were obtained. When silylated hydroquinone, 4,4′-dihydroxydiphenyl, 2,7-dihydroxynaphthalene or 4,4′-dihydroxydiphenylsulphide undergo polycondensation the resulting poly (ether ketone)s form crystals. It is demonstrated that transesterification does not take place and that block copoly(ether ketone-ether sulphone)s are synthesized. Furthermore, the thermostability of the poly(ether ketone)s in air was investigated.  相似文献   

17.
Soluble, thermally stable phthalazinone poly(aryl ether sulfone ketone)s (PPESKs) containing a carboxyl group in its side chain have been synthesized by the nucleophilic displacement reaction of 4‐(4‐hydroxylphenyl)‐1(2H)‐phthalazinone with bis(4‐chlorophenyl) sulfone, 4,4′‐difluoro‐benzophenone, and phenolphthalin. The polymerization reactions were conducted in sulfolane in the presence of K2CO3 to give high molecular weight polymers, which are soluble in solvent such as nitrobenzene and pyridine at room temperature and easily cast into flexible, yellow, and transparent film. The polymers are amorphous with high glass transition temperature. The decomposition temperature of the polymers are >400°C, which indicates high thermal stability. The crosslinking reaction of PPESK can occur by using dicyandiamide (Dicy) as curing agent. The apparent energy (ΔE) is 52.2 kJ/mol and reaction order (n) is close to 1.0. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1111–1114, 2003  相似文献   

18.
Summary: Blends of poly(acrylonitrile‐butadiene‐styrene) (ABS) and poly(ether ether ketone) (PEEK), in which PEEK has been used as a reinforcing medium for the ABS matrix in ratios up to 20 wt.‐% of the blend, were prepared by melt mixing using a laboratory mixer. All the blend compositions were processed at the ABS processing temperature so that the PEEK was dispersed in the ABS matrix without actually melting. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) studies revealed that the glass transition temperature (Tg) of the ABS phase in the blend did not show any appreciable change with composition. The dynamic storage modulus measured by DMA was found to be higher for the blend as compared to pure ABS due to reinforcement of the matrix by PEEK. The tensile strength and modulus behavior of these blends were found to follow the curves predicted using models proposed for composite systems having perfect adhesion, which shows the presence of some physical interaction between the blend components. The good tensile properties of the blend have been correlated with the observed morphology. The disperse phase in the blend has been found to be present in extremely small (sub‐micron) dimensions, which not only provides more surface area for possible interactions between the blend components but also result in efficient stress transfer between the matrix and the dispersed phase during the tensile tests. The thermal stability of the blends was investigated using thermogravimetric analysis (TGA). TGA further revealed that the constituents degraded at their respective decomposition temperatures.

SEM micrograph of tensile fractured surface of an ABS/PEEK 90/10 blend.  相似文献   


19.
Differential scanning calorimetry and dynamic mechanical analysis of blends of a new thermoplastic polyimide (TPI) and poly(ether imide) (PEI) have confirmed the full miscibility of the system over the whole composition range. Annealing of the blends above the glass transition temperature of TPI, but below its crystallization temperature, did not produce a shift in the glass transition, while physical ageing of the annealed blends also failed to reveal any indication of phase separation. The rate of crystallization of TPI was slowed by the addition of PEI, and the temperature of the maximum crystallization rate shifted upwards. The β‐relaxation behavior of the blends followed a linear trend between the response of the component polymers, while the low‐temperature γ‐relaxation was unchanged by blending. The time scale of physical ageing of the blends did not behave in a linear fashion, and the enthalpy loss on ageing also deviated from the average. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 543–552, 1999  相似文献   

20.
The thermal properties of blends of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) prepared by screw extrusion were investigated by differential scanning calorimetry. From the thermal analysis of amorphous PEEK–PEI blends which were obtained by quenching in liquid nitrogen, a single glass transition temperature (Tg) and negative excess heat capacities of mixing were observed with the blend composition. These results indicate that there is a favorable interaction between the PEEK and PEI in the blends and that there is miscibility between the two components. From the Lu and Weiss equation and a modified equation from this work, the polymer–polymer interaction parameter (χ12) of the amorphous PEEK–PEI blends was calculated and found to range from −0.058 to −0.196 for the extruded blends with the compositions. The χ12 values calculated from this work appear to be lower than the χ12 values calculated from the Lu and Weiss equation. The χ12 values calculated from the Tg method both ways decreased with increase of the PEI weight fraction. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 733–739, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号