首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutual diffusion coefficients (interdiffusion coefficients) have been determined for aluminium chloride in water at 298.15, 303.15 and 310.15 K at concentrations from 0.002 to 0.010 mol dm−3 together with molar conductivity values. The diffusion coefficients were obtained by using a conductimetric open-ended capillary cell. The experimental data were discussed on the basis of the Onsager-Fuoss model. The Nernst diffusion coefficients derived from diffusion 1.208 × 10−9 and 1.701 × 10−9 m2 s−1 and from conductance 1.238 × 10−9 and 1.692 × 10−9 m2 s−1, at two temperatures 298.15 and 310.15 K, respectively, agree well each other.  相似文献   

2.
Mutual diffusion coefficients (interdiffusion coefficients) and molar electrical conductivities have been measured for cobalt chloride aqueous solutions in the absence and the presence of saccharose at different concentrations (from 0.01 to 0.3 mol dm−3) and 298.15 K. The diffusion coefficients were measured by using the conductimetric method. For these aqueous solutions, limiting molar conductivity values have been calculated. The value of λ0(Co2+) = 105.36 × 10−4 S m2 mol−1, obtained at 298.15 K in pure water solution, agrees well with that reported in the literature. The Nernst diffusion coefficient values derived from diffusion (1.301 × 10−9 m2 s−1) and from conductance (1.295 × 10−9 m2 s−1) are also in good agreement.The dependence of diffusion coefficients and electrical conductivity of CoCl2 on the concentration of saccharose is discussed by considering the effect of the carbohydrate on the electrolyte dehydration, as well as on the ion-pairs and complexes (CoCl2-saccharose and ions-saccharose) formation.  相似文献   

3.
G. Dhoot  M. Rubino  H. Soto-Valdez 《Polymer》2009,50(6):1470-978
A time-resolved Fourier Transform Infrared-Attenuated Total Reflectance Spectroscopy (FTIR-ATR) technique was set up and used to study the diffusion of eugenol through Linear Low Density Polyethylene (LLDPE) at 16, 23 and 40 °C. The 1514 cm−1 peak for eugenol (aromatic -CC- stretching) was monitored over time and used to determine the diffusion coefficient (D). The Fickian model was found to fit well to the experimental data and the D value of eugenol through LLDPE was found to be between 1.05 ± 0.01 and 13.23 ± 0.18 × 10−10 cm2/s. The FTIR-ATR results were compared with one and two side diffusion process using a permeation cell and quantified by High Performance Liquid Chromatography (HPLC) technique. Eugenol sorbed in LLDPE samples at different times, was extracted in methanol and the concentration determined by HPLC. The diffusion coefficient by both two-sided and one-sided HPLC technique was found to be approximately three times higher than the FTIR-ATR values although they were in the same order of magnitude of 10−10 cm2/s. The difference between the FTIR-ATR and HPLC results was mainly attributed to difference between the two measuring techniques.  相似文献   

4.
A test method is proposed for measuring chloride diffusion coefficients through partially saturated concrete specimens with well characterized water contents. It includes an experimental procedure for supplying a limited amount of Cl to the tested concrete surface, and two mathematical models for processing the experimental Cl content profiles obtained at selected diffusion times. The use of the more refined model, taking into account the chloride binding by concrete, allows to increase the reliability of the determined diffusion coefficients. For the two tested Portland cement concretes, (water/cement ratios 0.6 and 0.5), the Cl diffusion coefficient decreases about two orders of magnitude, from 6 · 10− 12 to 2 · 10− 14 m2/s, when the relative humidity of the atmosphere in equilibrium with concrete is lowered from 95% to 54% approximately.  相似文献   

5.
R.W. Smith  J. Booth  A.S. Clough 《Polymer》2004,45(14):4893-4908
Water diffusion into cylindrical biodegradable monolithic depots fabricated from extruded mixtures of poly(dl-lactide) and a peptidic drug, goserelin, containing 20, 30 and 40% drug by weight has been studied using an ion beam analysis technique. A series of depots were immersed in a phosphate buffered saline/heavy water solution at 37 °C for times ranging from 1 h to 7 days. One-dimensional radial profiles showing the diffusion of water into the depots were produced at points along the length of the sample and, for some short immersion times, axial profiles were obtained for the cylinder ends. The changes in weight, radius, drug release and water uptake of the depots with time were also studied. Using the water uptake measurements the one-dimensional radial profiles were normalised. From appropriate one-dimensional profiles at the shorter times Fickian diffusion coefficients were obtained for initial water diffusion. The average radial diffusion coefficients were (1.07±0.22)×10−8 cm2 s−1 for the 20% drug-loaded depots, (1.54±0.27)×10−8 cm2 s−1 for the 30% drug-loaded depots and (2.00±0.83)×10−8 cm2 s−1 for the 40% drug-loaded depots—in the ratio of the drug loadings i.e. 2:3:4, implying the water associated with drug during its uptake into the monoliths. The axial diffusion coefficients were found to be of the same order of magnitude as the radial diffusion coefficients, in accord with this hypothesis. At longer times there is a subsequent non-Fickian increase in the water concentration profile. In the case of depots loaded with 40% by weight of goserelin, the substantial fraction of the hydrophilic drug released at times greater than one day is accompanied by a decrease in radius and a decrease in water concentration near the depot surface.  相似文献   

6.
We study the thermodynamics and kinetics of the adsorption of a redox couple having quinone nature on glassy carbon electrodes. This couple is produced by the anodic oxidation of mycotoxin ochratoxin A in 10% acetonitrile + 90% 1 M HClO4 aqueous solution. The quasi-reversible redox couple was studied by both cyclic (CV) and square wave (SWV) voltammetric techniques. The Frumkin adsorption isotherm best described the specific interaction of the redox couple with carbon electrodes. By fitting the experimental data, we obtained values of −28.4 kJ mol−1 and 0.70 ± 0.02 for the Gibbs free energy of adsorption and the interaction parameter, respectively. SWV fully characterized the thermodynamics and kinetics of the adsorbed redox couple, using a combination of the “quasi-reversible maximum” and the “splitting of SW peaks” methods. Average values of 0.609 ± 0.003 V and 0.45 ± 0.06 were obtained for the formal potential and the anodic transfer coefficient, respectively. Moreover, a formal rate constant of 10.7 s−1 was obtained. SWV was also employed to generate calibration curves. The lowest concentration of mycotoxin was 1.24 × 10−8 M (5 ppb), measured indirectly with a signal to noise ratio of 3:1.  相似文献   

7.
S. Majdi  H. Heli 《Electrochimica acta》2007,52(14):4622-4629
This study investigated the electrocatalytic oxidation of alanine, l-arginine, l-phenylalanine, l-lysine and glycine on poly-Ni(II)-curcumin film (curcumin: 1,7-bis [4-hydroxy-3-methoxy phenyl]-1,6-heptadiene-3,5-dione) electrodeposited on a glassy carbon electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy techniques. Voltammetric studies indicated that in the presence of amino acids the anodic peak current of low valence nickel species increased, followed by a decrease in the corresponding cathodic current. This indicates that amino acids were oxidized on the redox mediator which was immobilized on the electrode surface via an electrocatalytic mechanism. Using Laviron's equation, the values of α and ks for the immobilized redox species were determined as 0.43 ± 0.03 and 2.47 ± 0.02 × 106 s−1, respectively. The rate constant, the electron transfer coefficient and the diffusion coefficients involved in the electrocatalytic oxidation of amino acids were determined.  相似文献   

8.
The adsorption kinetics of erythrosine B and indigo carmine on chitosan films was studied by a diffusional mass transfer model. The experimental curves were obtained in batch system under different conditions of stirring rate (80–200 rpm) and initial dye concentration (20–100 mg L−1). For the model development, external mass transfer and intraparticle diffusion steps were considered and the specific simplifications were based on the system characteristics. The proposed diffusional mass transfer model agreed very well with the experimental curves, indicating that the surface diffusion was the rate limiting step. The external mass transfer coefficient (kf) was dependent of the operating conditions and ranged from 1.32 × 10−4 to 2.17 × 10−4 m s−1. The values of surface diffusion coefficient (Ds) increased with the initial dye concentration and were in the range from 0.41 × 10−14 to 22.90 × 10−14 m2 s−1. The Biot number ranged from 17.0 to 478.5, confirming that the intraparticle diffusion due to surface diffusion was the rate limiting step in the adsorption of erythrosine B and indigo carmine on chitosan films.  相似文献   

9.
Shane A. Seabrook 《Polymer》2005,46(23):9562-9573
The kinetics of acrylamide (AAm) free radical polymerization at low conversion of monomer to polymer in the aqueous phase was investigated at 50 °C using γ-radiolysis relaxation, which is sensitive to radical-loss processes. The values of the termination rate coefficients for AAm ranged from 8×106 to 3×107 M−1 s−1 as the weight fraction of polymer ranged from 0.002 to 0.0035, which is significantly lower than the low-conversion values for monomers such as styrene (2×108 M−1 s−1) and methyl methacrylate (4×107 M−1 s−1) in organic media. These can be quantitatively explained by applying a chain-length-dependent model of free-radical polymerization kinetics [Russell GT, Gilbert RG, Napper DH. Macromolecules 1992;25:2459. [19]] in which termination kinetics are expressed in terms of a diffusion-controlled encounter of radicals which ultimately yields an expression for the chain-length-averaged termination rate coefficient, 〈kt〉. The lower 〈kt〉 for AAm arises due to a combination of the high kp value, promoting rapid formation of slower terminating long chains, and the slow diffusion of short propagating chains, relative to other common monomers. The chain transfer to monomer constant for AAm in water at 50 °C, CM, was estimated using the chain-length-distribution method with correction for band-broadening [Castro JV, van Berkel KY, Russell GT, Gilbert RG. Aust J Chem 2005;58:178. [21]] and found to be 1.2×10−4 (±10%). The diffusion characteristics for AAm were adapted from those obtained for a similar aqueous system (hydroxyethyl methacrylate) together with a 0.5 exponent for the power law dependence on penetrant degree of polymerization at zero weight fraction polymer. This provides an adequate fit to the 〈kt〉 data. This is the first application of the chain-length-dependent model to describe experimental termination rate coefficients for an aqueous system at low conversion to polymer. The result that the experimental termination rate coefficients can be reproduced with an a priori model with physically reasonable parameters supports the physical assumptions underlying that model.  相似文献   

10.
As a first step towards preparing fouling-resistant coatings for water purification membranes, three series of copolymer hydrogel networks were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as the crosslinker and acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), or poly(ethylene glycol) acrylate (PEGA) as comonomers. Copolymers containing varying amounts of PEGDA with each of these comonomers were prepared. Glass transition temperatures obeyed the Fox equation. Crosslink density strongly influenced water uptake and water permeability for materials of constant chemical composition. For example, the volume fraction of water sorbed by a 100 mol% PEGDA hydrogel was 0.61. However, introducing comonomers into the network reduced hydrogel crosslink density, and in hydrogels having the same ethylene oxide content, water sorption increased as crosslink density decreased. The highest water volume fraction observed was 0.72, obtained in a copolymer containing 80 mol% PEGA and 20 mol% PEGDA. Water permeability increased systematically with increasing water sorption, and water permeability coefficients ranged from 10 to 26 L μm/(m2 h bar). NaCl partition coefficients ranged from 0.36 to 0.53 (g NaCl/cm3 hydrogel)/(g NaCl/cm3 solution). NaCl diffusion coefficients varied little with polymer composition; in this regard, diffusion coefficient values ranged from 4.3 × 10−6 to 7.4 × 10−6 cm2/s. Based on contact angle measurements using n-decane in water, oil exhibited a low affinity for the surfaces of these polymers, suggesting that coatings prepared from such materials might improve the fouling resistance of membranes towards oily wastewater.  相似文献   

11.
Xianfeng Li 《Polymer》2005,46(15):5820-5827
A series of sulfonated poly(ether ether ketone ketone)s (SPEEKK)s based membranes have been prepared and evaluated for proton exchange membranes (PEM). The membranes show very good thermal and mechanical stabilities. The structures of membranes were studied with AFM. The membranes show very good proton conductive ability (25 °C: 0.007-0.04 s/cm) and methanol resistance (25 °C: 7.68×10−8 to 5.75×10−7 cm2/s). The methanol diffusion coefficients of membranes are much lower than that of Nafion (2×10−6 cm2/s). The SPEEKKs membranes show very good respective in direct methanol fuel cells (DMFC) usages.  相似文献   

12.
A commercial computational fluid dynamics code (Fluent) has been used to analyze the performance of a unit cell laboratory; the filter-press reactor (FM01-LC) operating with characteristic linear flow velocities between 0.024 m s−1 and 0.110 m s−1. The electrolyte flow through the reactor channel was numerically simulated using a finite volume approach to the solution of the Navier-Stokes equations. The flow patterns in the reactor were obtained and the mean linear electrolyte velocity was evaluated and substituted into a general mass transport correlation to calculate the mass transport coefficients. In the region of 150 < Re < 550, mass transport coefficients were obtained with a relative error between 5% and 29% respect to the experimental km values. The differences between theoretical and experimental values are discussed.  相似文献   

13.
A promising cleaner approach, including chemical extraction, separation and purification by membranes separation technology, for producing ephedrine from Ephedra sinica Stapf was introduced. The extraction yield of ephedrine reached 92.45 ± 0.46%, increased by 28.25 ± 0.13% than that of the traditional process, at solid-to-liquid ratio of 1/10, extraction temperature of 80 °C, total extraction time of 20 h and reextraction for 3 times. In microfiltration, the transmissivity for ephedrine was up to 97.88 ± 1.06% and the retention rate of impurities reached 78.56 ± 0.96% when the membranes with pore size of 0.45 μm were employed at inlet and outlet operating pressure of 0.26 MPa and 0.14 MPa, respectively. The surface velocity of membrane channel was 3.5 m s−1 and membrane flux was 207 ± 3.71 l m−2 h−1. Nanofiltration membranes with 160 Da molecular weight cut-off (MWCO) were adopted to separate the ephedrine from microfiltration permeate at a transmembrane pressure of 0.6 MPa wherein the retention rate of ephedrine reached 99.88 ± 0.23% and the membrane flux was 19.88 ± 1.12 l m−2 h−1. For this improved approach, the COD of nanofiltration permeate was only 110 ± 12.56 mg l−1 which could be recycled to the extraction process, causing a decrease by 59.38 ± 1.67% of water consumption and 75.76 ± 1.89% of wastewater generation in comparison with those of the traditional process.  相似文献   

14.
Oxygen permeabilities of nanocomposite films consisting of multi wall carbon nanotubes (MWNT) and polystyrene (PS) were determined to investigate the oxygen diffusion depending on MWNT and temperature. A method which is based on quenching of an excited phosphorescent by oxygen was applied for the measurements. The composite films were prepared from mixtures of (MWNT) and surfactant-free pyrene (P)-labeled (PS) latexes of various compositions at room temperature. These films were then annealed at 170 °C which is well above the glass transition (Tg) temperature of polystyrene, for 10 min. Diffusion experiments were performed for eight films with different MWNT content (0, 1.5, 3, 5, 10, 15, 25 and 40 wt%) to evaluate the effect of MWNT content on oxygen diffusion. Diffusion coefficients were found to increase from 1.1 × 10−12 to 41 × 10−12 cm2 s−1 with increasing MWNT content. On the other hand, to examine the effect of temperature on oxygen diffusion, diffusion measurements were performed over a temperature range of 24–70 °C for three different MWNT contents (3, 15, and 40 wt%) within the films. The results indicated that the values of the diffusion coefficient D are strongly dependent on both temperature and MWNT content in the film. It was also observed that the diffusion coefficients obey Arrhenius behavior, from which diffusion energies were determined, which increased with increase of MWNT content and temperature.  相似文献   

15.
Samples and fractions of a membrane-forming polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), were studied by methods of molecular hydrodynamics (velocity sedimentation, translational isothermal diffusion and viscometry) in cyclohexane in the molecular mass range 60<M×10−3 g mol−1<430. The following molecular-mass dependencies of the hydrodynamic characteristics (intrinsic viscosity [η] (cm3 g−1), sedimentation coefficient s0(s) and translational diffusion coefficient D0 (cm2 s−1)) were established: [η]=0.198 M0.50±0.06; s0=8.66×10−16M0.50±0.04; D0=9.30×10−5M−0.50±0.04. On the basis of the hydrodynamics data the equilibrium rigidity and hydrodynamic diameter of PTMSP chains were evaluated. The equilibrium properties of the different disubstituted polyacetylenes molecules are compared on the base of the normalised scaling plots.  相似文献   

16.
Diffusion coefficient is an important property in chemical industry and precise measurements can be achieved by electrochemical techniques. Study of ferrocene diffusion was carried out in 1-hexyl-3-methyl imidazolium hexafluorophosphate-dense CO2 ([C6MIM][PF6-CO2]) biphasic system using microelectrode technique. Diffusion coefficients were determined by cyclic voltammetry and Randles-Šev?ík relationship in the temperature and pressure ranging from 303.15 to 333.15 K and 1-10 MPa, respectively. Computed phase simulations were also used. Two-phase system was determined whatever experimental conditions and composition tested. Volumes of heavy and light phase were estimated as well. Both electroanalytical and computed studies showed that [C6MIM][PF6]-CO2 biphasic system containing initial molar fraction of CO2 up to 0.9 can be used without decrease in diffusion coefficient values. The order of magnitude of these diffusion coefficients of ferrocene in greener aprotic media is about 10−6 m2 s−1. Theoretical analysis of ferrocene mass transport was also carried out using Sutherland formula and viscosity model based on Eyring's absolute rate theory. Dramatic decrease in [C6MIM][PF6]-CO2 mixture viscosity with x(CO2) was estimated by calculations.  相似文献   

17.
S. Bollo 《Electrochimica acta》2007,52(15):4892-4898
The heterogeneous electron transfer reaction for the reduction of some nitroso aromatic derivatives in aqueous-alcoholic medium was studied on both mercury and glassy carbon electrodes (GCE) by using cyclic voltammetry (CV) and scanning electrochemical microscopy techniques (SECM).The nitrosoaromatic derivatives followed a two-electron two-proton mechanism producing a quasi-reversible overall process. This strongly pH dependent mechanism varied from ECCE mechanism at pH < 8.5 to ECEC mechanism at pH > 8.5.The apparent heterogeneous rate constant for the reduction of the nitroso derivatives was calculated using CV or SECM. The rate constant for the electron transfer process depends on the nature of the electrode material. The heterogeneous rate constant on the GCE is almost two orders of magnitude smaller than that on mercury electrode i.e. (3.4 ± 0.3) × 10−3 cm s−1 on Hg and (7.0 ± 1.0) × 10−5 cm s−1 on GCE, for the same nitroso compound and pH.The heterogeneous rate constant values were checked by comparison between experimental and simulated cyclic voltammograms.  相似文献   

18.
The mass transport of biologically-active l-cysteine derivatized with the ferrocenyl group (FcCH2Cys) was investigated voltammetrically at a microelectrode in aqueous solutions under the conditions of varying content of supporting electrolyte and at different pH values. By varying the pH conditions one could obtain samples containing differently ionized forms of the l-cysteine derivative, from a monovalent cation via a neutral form (zwitterion) to a monovalent anion. Due to the acid-base equilibrium the obtained solutions were, in fact, mixtures composed predominantly of either anionic or cationic, or neutral species of FcCH2Cys, respectively. Under the conditions of low ionic support the mass transport of these forms is differently affected by the migrational contribution. The results obtained experimentally were in good agreement with the theoretical predictions. In the calculations it was assumed that the FcCH2Cys forms, coexisting in the solution, contribute independently to the steady-state transport-limited current. It was also assumed that the diffusion coefficients of the FcCH2Cys forms were equal. This was validated by the voltammetric measurements at the supporting electrolyte excess (purely diffusional conditions). The diffusion coefficients of different forms of FcCH2Cys are very similar and the average diffusion coefficient is (5.35 ± 0.05) × 10−10 m2/s.The studies clearly show that the variation in the conditions of pH or/and concentration of electrolyte can change the transport rate of l-cysteine even by several tens percent.  相似文献   

19.
To use the protonic mesothermal fuel cell without humidification, mass transportation in diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]), trifluoromethanesulfuric acid (TfOH)-added [dema][TfO], and phosphoric acid (H3PO4)-added [dema][TfO] was investigated by electrochemical measurements. The diffusion coefficient and the solubility of oxygen were ca. 10−5 cm2 s−1 and ca. 10−3 M (=mol dm−3), respectively. Those of hydrogen were a factor of 10 and one-tenth compared to oxygen, respectively. The permeability, which is a product of the diffusion coefficient and solubility, of oxygen and hydrogen were almost the same for the perfluoroethylenesulfuric acid membrane and the sulfuric acid solution; therefore, these values are suitable for fuel cell applications. On the other hand, a diffusion limiting current was observed for the hydrogen evolution reaction. The current corresponded to ca. 10−10 mol cm−1 s−1 of the permeability, and the diffusion limiting species was the hydrogen carrier species. The TfOH addition enhanced the diffusion limiting current of [dema][TfO], and the H3PO4 addition eliminated the diffusion limit. The hydrogen bonds of H3PO4 or water-added H3PO4 might significantly enhance the transport of the hydrogen carrier species. Therefore, [dema][TfO] based materials are candidates for non-humidified mesothermal fuel cell electrolytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号