首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

2.
Miscibility of biodegradable poly(ethylene succinate) (PES)/poly(vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) in this work. PES is found to be miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. Spherulitic morphology and the growth rates of neat and blended PES were investigated by optical microscopy (OM). Both neat and blended PES show a maximum growth rate value in the crystallization temperature range of 45-65 °C, with the growth rate of neat PES being higher than that of blended PES at the same crystallization temperature. The overall crystallization kinetics of neat and blended PES was also studied by DSC and analyzed by the Avrami equation at 60 and 65 °C. The crystallization rate decreases with increasing the temperature for both neat and blended PES. The crystallization rate of blended PES is lower than that of neat PES at the same crystallization temperature. However, the Avrami exponent n is almost the same despite the blend composition and crystallization temperature, indicating that the addition of PVPh does not change the crystallization mechanism of PES but only lowers the crystallization rate.  相似文献   

3.
Y KongJ.N Hay 《Polymer》2002,43(6):1805-1811
Poly(ethylene terephthalate)/polycarbonate blends were produced in a twin-screw extruder with and without added transesterification catalyst, lanthanum acetyl acetonate. The miscibility of the blends was studied from their crystallisation behaviour and variation in glass transition temperature with composition using differential scanning calorimetry, scanning electron microscopy and change in mechanical properties. The blends prepared without the catalyst showed completely immiscible over all compositions, while those prepared in the presence of the catalyst showed some limited miscible. The presence of PC inhibited the crystallisation of PET but this was much greater in the blends prepared in the presence of catalyst suggesting that some reaction had taken place between the two polyesters. The tensile properties showed little differences between the two types of blends.  相似文献   

4.
The effects of incorporated amorphous poly(dl-lactide) (PDLLA) on the isothermal crystallization and spherulite growth of crystalline poly(l-lactide) (PLLA) and the structure of the PLLA/PDLLA blends were investigated in the crystallization temperature (Tc) range of 90-150 °C. The differential scanning calorimetry results indicated that PLLA and PDLLA were phase-separated during crystallization. The small-angle X-ray scattering results revealed that for Tc of 130 °C, the long period associated with the lamellae stacks and the mean lamellar thickness values of pure PLLA and PLLA/PDLLA blend films did not depend on the PDLLA content. This finding is indicative of the fact that the coexisting PDLLA should have been excluded from the PLLA lamellae and inter-lamella regions during crystallization. The decrease in the spherulite growth rate and the increase in the disorder of spherulite morphology with an increase in PDLLA content strongly suggest that the presence of a very small amount of PDLLA chains in PLLA-rich phase disturbed the diffusion of PLLA chains to the growth sites of crystallites and the lamella orientation. However, the wide-angle X-ray scattering analysis indicated that the crystalline form of PLLA remained unvaried in the presence of PDLLA.  相似文献   

5.
J.Z YiS.H Goh 《Polymer》2003,44(6):1973-1978
Poly(methylthiomethyl methacrylate) (PMTMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PMTMA and PVA was examined by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the thioether sulfur atoms of PMTMA, and the involvement of the carbonyl groups of PMTMA in interactions is not significant. The measurements of proton spin-lattice relaxation time reveal that PMTMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. In comparison, we have previously found that PMTMA is miscible with poly(p-vinylphenol) and the two polymers mix intimately on a scale of 1-3 nm.  相似文献   

6.
The miscibility of poly(D ,L -lactide) (PDLLA) and poly(p-vinylphenol) (PVPh) blends has been studied by differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). Phase separation was observed in blends over a wide composition range. A PDLLA-rich phase was found to coexist with an almost pure PVPh phase. The quenched blend samples showed two glass transitions (Tgs), except for a blend with a low PVPh content. However, the Tg value of the PDLLA-rich phase showed a gradual increase with increasing PVPh content. No evidence of interassociation (hydrogen bond formation) between PDLLA and PVPh was found by FTIR. The phase behavior of the blends was simulated using an association model. The results suggested that the equilibrium constant of interassociation between PDLLA and PVPh was small. The phase compositions of the two separated phases were calculated using Fox, Gordon-Taylor, and Couchman equations. The amount of PVPh in the PDLLA-rich phase increased with increasing PVPh content in the blend. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 811–816, 1998  相似文献   

7.
Dual-phase continuity and phase inversion of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends processed in a twin-screw extruder was investigated using a selective extraction technique and scanning electron microscopy. Emphasis was placed on investigating the effects of viscosity ratio, blend composition, processing variables (mixing time and annealing) and diblock copolymer addition on the formation of bi-continuous phase structure (BPS) in PS/PMMA blends. The experimental results were compared with the volume fraction of phase inversion calculated with various semi-empirical models. The results showed that the formation of a BPS strongly depends on the blend composition and the viscosity ratio of the constituent components. Furthermore, BPS was found in a wide volume fraction interval. Increasing the mixing time and the addition of diblock copolymer, both led to a narrowing range of volume fraction in which BPS exists. Quiescent annealing coarsened the structure but indicated no qualitative changes. Some model predictions for phase inversion could predict qualitative aspects of the observed windows of co-continuity but none of the models could account quantitatively for the observed data.  相似文献   

8.
The miscibility, morphology and tensile properties of three blend systems of poly(ε‐caprolactone) (PCL) with poly(vinyl chloride) (PVC) and with two chlorinated PVCs (CPVCs) with different chlorine contents (63 wt% and 67 wt% of Cl) have been studied. Based on the shifts of single glass transition temperature, the Gordon–Taylor K parameter is calculated as a measurement of interaction strength between PCL and (C)PVCs. Higher K values are found for blends of (C)PVCs with higher chlorine content, together with the interaction χ parameters estimated from the melting point depression results. The morphology observed with polarized light microscopy shows that spherulites exist in blends rich in PCL (≥50 wt%) only. Wide angle X‐ray diffraction studies indicate that the crystal structure of PCL is independent of the Cl content of (C)PVCs. The tensile properties of various blends exhibit a minimum as the PCL content increases. The elongation at break increases with increasing PCL content. © 2000 Society of Chemical Industry  相似文献   

9.
The phase behavior and motional mobility in binary blends of polystyrene (PS) and poly(cyclohexyl methacrylate) (PCHMA) have been investigated by solid state 13C NMR techniques. The blend miscibility has been studied by examining the 1H spin-relaxation times in the laboratory frame (T1H) and in the rotating frame (T1ρH) for the PCHMA/PS blends with various compositions and pure components. The T1ρH results show that PCHMA and PS are intimately mixed at the molecular level within the blends at all compositions. In addition, according to the results of carbon T1ρ relaxation time measurements, we conclude that mixing is intimate enough to cause a reduction in local chain mobility for PS, but an increase in side chain mobility for PCHMA.  相似文献   

10.
Miscibility has been investigated in blends of poly(butylene succinate) (PBSU) and poly(vinyl phenol) (PVPh) by differential scanning calorimetry in this work. PBSU is miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer–polymer interaction parameter, obtained from the melting depression of PBSU using the Nishi–Wang equation, is composition dependent, and its value is always negative. This indicates that PBSU/PVPh blends are thermodynamically miscible in the melt. Preliminary morphology study of PBSU/PVPh blends was also studied by optical microscopy (OM). OM experiments show the spherulites of PBSU become larger with the PVPh content, indicative of a decrease in the nucleation density, and the coarseness of PBSU spherulites increases too with increasing the PVPh content in the blends.  相似文献   

11.
Blends of poly(ethylene oxide) (PEO) with poly(ε-caprolactone) (PCL), both semicrystalline polymers, were prepared by co-dissolving the two polyesters in chloroform and casting the mixture. Phase contrast microscopy was used to probe the miscibility of PEOB/PCL blends. Experimental results indicated that PEO was immiscible with PCL because the melt was biphasic. Crystallization of PEO/PCL blends was studied by differential scanning calorimetry and analyzed by the Avrami equation. The crystallization rate of PEO decreased with the increase of PCL in the blends while the crystallization mechanism did not change. In the case of the isothermal crystallization of PCL, the crystallization mechanism did not change, and the change in the crystallization rate was not very big, or almost constant with the addition of PEO, compared with the change of the crystallization rate of PEO.  相似文献   

12.
H.L HuangS.H Goh  A.T.S Wee 《Polymer》2002,43(9):2861-2867
The miscibility and specific interactions in poly(2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) (PFX, X=0, 28, 40 or 54, denoting the mol% of 4-vinylpyridine unit in the copolymer)/poly(p-vinylphenol) (PVPh) blends have been studied by differential scanning calorimetry (DSC), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). DSC studies show that PF0 is immiscible with PVPh, and the presence of a sufficient amount of 4-vinylpyridine units in the copolymer produces miscible blends. AFM images also clearly show that the blends change from heterogeneous to homogeneous upon the incorporation of 4-vinylpyridine unit into the copolymer. FTIR and XPS show the existence of inter-polymer hydrogen bonding between PFX and PVPh. The intensity of the inter-polymer hydrogen bonding increases with increasing 4-vinylpyridine content in the copolymer.  相似文献   

13.
The membrane samples of poly(vinyl alcohol)/poly(acrylic-acid) (PVA/PAA) blend with different draw ratios were studied by both 13C CP/MAS NMR and wide-angle X-ray diffraction (WAXD) measurements. Phase separation induced by elongation of the sample was observed and the change of the phase structure with draw ratio was found to be dependent on the composition of the blend samples.  相似文献   

14.
Sixun Zheng  Yongli Mi 《Polymer》2003,44(4):1067-1074
The blends of poly(hydroxyether of bisphenol A) (phenoxy) with poly(4-vinyl pyridine) (P4VPy) were investigated by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and high-resolution solid-state nuclear magnetic resonance (NMR) spectroscopy. The single, composition-dependent glass transition temperature (Tg) was observed for each blend, indicating that the system is completely miscible. The sigmoid Tg-composition relationship is characteristic of the presence of the strong intermolecular specific interactions in the blend system. FTIR studies revealed that there was intermolecular hydrogen bonding in the blends and the intermolecular hydrogen bonding between the pendant hydroxyl groups of phenoxy and nitrogen atoms of pyridine ring is much stronger than that of self-association in phenoxy. To examine the miscibility of the system at the molecular level, the high resolution 13C cross-polarization (CP)/magic angle spinning (MAS) together with the high-power dipolar decoupling (DD) NMR technique was employed. Upon adding P4VPy to the system, the chemical shift of the hydroxyl-substituted methylene carbon resonance of phenoxy was observed to shift downfield in the 13C CP/MAS spectra. The proton spin-lattice relaxation time T1(H) and the proton spin-lattice relaxation time in the rotating frame T(H) were measured as a function of the blend composition. In light of the proton spin-lattice relaxation parameters, it is concluded that the phenoxy and P4VPy chains are intimately mixed on the scale of 20-30 Å.  相似文献   

15.
M. Maldonado-Santoyo  I. Katime 《Polymer》2004,45(16):5591-5596
Miscibility behavior over a wide composition range was detected for polymer blends of poly(vinyl phenyl ketone hydrogenated) (PVPhKH) with poly(styrene-co-4-vinylpyridine) (PS-co-4VPy). Differential scanning calorimetry (DSC) and thermo mechanical analysis (TMA) reveal that each composition has only one glass transition temperature. The variation of the glass transition temperature with composition for PVPhKH/PS-co-4VPy miscible blends follows the Gordon-Taylor equation. FTIR analysis of this binary system indicates the existence of hydrogen bonding between pyridine ring of PS-co-4VPy and hydroxyl groups insert into PVPhKH. This specific interaction has a decisive influence in the phase behavior of PVPhKH/PS-co-4VPy blends.  相似文献   

16.
Han LüSixun Zheng 《Polymer》2003,44(16):4689-4698
Thermosetting polymer blends composed of polybenzoxazine (PBA-a) and poly(ethylene oxide) (PEO) were prepared via in situ curing reaction of benzoxazine (BA-a) in the presence of PEO, which started from the initially homogeneous mixtures of BA-a and PEO. Before curing, the BA-a/PEO blends displayed the single and composition-dependant glass transition temperatures (Tg's) in the entire blend composition, and the equilibrium melting point depression was also observed in the blends. It is judged that the BA-a/PEO blends are completely miscible. The miscibility was mainly ascribed to the contribution of entropy to mixing free energy since the molecular weight of BA-a is rather low. However, phase separation occurred after curing reaction at the elevated temperature, which was confirmed by differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). It was expected that the PBA-a/PEO blends would be miscible since PBA-a possesses a great number of phenolic hydroxyls in the molecular backbone, which are potential to form the intermolecular hydrogen bonding interactions with oxygen atoms of PEO and thus would fulfill the miscibility of the blends. To interpret the experimental results, we investigated the variable temperature Fourier transform infrared spectroscopy (FTIR) of the blends via model compound. The FTIR results indicate that the phenolic hydroxyl groups could not form the efficient intermolecular hydrogen bonding interactions at the elevated temperatures (e.g. the curing temperatures), i.e. the phenolic hydroxyl groups existed mainly in the non-associated form in the system. Therefore, the decrease of the mixing entropy still dominates the phase behavior of thermosetting blends at the elevated temperature.  相似文献   

17.
Scanning electron microscopy, solid-state proton NMR spectroscopy and static mechanical analysis have been performed in order to evaluate the compatibilising action of random copolymers of polystyrene and polybutadiene and triblock copolymers of poly(styrene-butadiene-styrene) in incompatible polystyrene/polybutadiene (PS/PB) blends. Scanning electron microscopic examination of the cryofractured and etched surfaces showed high degree of compatibilising action of the triblock copolymers as evidenced by the very sharp decrease of the domain size of the dispersed phase followed by an increase at higher concentrations. This is a clear indication of interfacial saturation. These results were in agreement with the theoretical predictions of Noolandi and Hong. The random copolymer was not effective in compatibilising the system. Solid-state proton NMR experiments were performed on the uncompatibilised and compatibilised blends. The proton spin-lattice relaxation times in the laboratory frame, T1(H), and in the rotating frame, T1ρ(H), and spin-spin relaxation times, T2(H), were carefully measured for the systems. Significant changes were observed for the systems compatibilised with triblock copolymers due to the preferential localisation of the copolymers at the PS/PB interface. However, the random copolymer did not have any compositional drift and is not an effective interface modifier in agreement with microscopy study. The static mechanical properties of the blends have also been analysed. The addition of triblock copolymers increased the mechanical properties of the blends. Finally, attempts have been made to correlate the NMR results with the microstructure and mechanical properties of the blends.  相似文献   

18.
The article discusses the influence of the oligomeric resin, hydrogenated oligo(cyclopentadiene) (HOCP), on the morphology and properties of its blends with isotactic poly(1-butene) (PB-1). PB-1 and HOCP are found to be partially miscible in the melt state. Solidified PB-1/HOCP blends contain three phases: (1) a crystalline phase formed by PB-1 crystals; (2) an amorphous PB-1-rich phase; and (3) an amorphous HOCP-rich phase. The optical micrographs of the solidified blends show a morphology constituted by microspherulites and domains of the HOCP-rich phase homogeneously distributed in the intraspherulitic region. DSC and DMTA results show two glass transition temperatures (Tg), different from the Tg values of the plain components. The lower Tg is attributed to the PB-1-rich phase, and the higher Tg, to the HOCP-rich phase. The tensile properties were investigated at 25 and 80°C. At 25°C, the PB-1-rich phase is rubbery and the HOCP-rich phase is glassy, so the addition of HOCP to PB-1 arouses a noteworthy hardening of the samples and this brings an increase of the Young's modulus, E′ (although the blend crystallinity lessens), and decreases of stresses at yielding point (σy) and at rupture (σr). The 90/10 and 80/20 blends show high values of elongation at rupture (εr). At 80°C, the blends show decreases of E′ and σr values with the HOCP content. These decreases are attributed to the rubbery state of the phases and reduction of the blend's crystallinity. At 80°C, all the blends show a high value of εr. This phenomenon is attributed to the fine-size domain dispersion of the phases and to sufficient densities of tie molecules and entanglements. Finally, the partial miscibility behavior proposed in this article is compared with the miscibility hypothesis reported elsewhere. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1369–1381, 1998  相似文献   

19.
BACKGROUND: Poly(para‐dioxanone) (PPDO) is a biodegradable polyester with excellent biodegradability, bioabsorbability, biocompatibility and mechanical flexibility. However, its high cost and relatively fast degradation rate have hindered the development of commercial applications. Blending with other polymers is a simple and convenient way of modifying the properties of aliphatic polyesters. Poly(D ,L ‐lactide) (PDLLA) is another polyester that has been extensively studied for biomedical applications due to its biocompatibility and suitable degradation rate. However, to our knowledge, blends of PPDO/PDLLA have not been reported in the literature. RESULTS: A series of biodegradable polymers were blended by solution co‐precipitation of PPDO and PDLLA in various blend ratios. The miscibility, morphology and thermal properties of the materials were investigated. DSC curves for all blends revealed two discrete glass transition temperatures which matched the values for pure PPDO and PDLLA. SEM images of fracture surfaces displayed evidence of phase separation consistent with the DSC results. The contact angles increased with the addition of PDLLA. CONCLUSION: PPDO/PDLLA blends exhibit two distinct glass transition temperatures that remain nearly constant and correspond to the glass transition temperatures of the homopolymers for all blend compositions, indicating that blends of PPDO and PDLLA are immiscible. Images of the surface obtained using SEM were also suggestive of a two‐phase material. The crystallinity of the PPDO phase in the blends was affected by the PDLLA content. The mechanical properties of the blends changed dramatically with composition. Adding PDLLA makes the blends less hydrophilic than PPDO. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
In this work, the effect of poly(l ‐lactide) (PLLA) components on the crystallization behavior and morphology of poly(?‐caprolactone) (PCL) within PCL/PLLA blends was investigated by polarized optical microscopy, DSC, SEM and AFM. Morphological results reveal that PCL forms banded spherulites in PCL/PLLA blends because the interaction between the two polymer components facilitates twisting of the PCL lamellae. Additionally, the average band spacing of PCL spherulites monotonically decreases with increasing PLLA content. With regard to the crystallization behaviors of PCL, the crystallization ability of PCL is depressed with increase of the PLLA content. However, it is interesting to observe that the growth rate of PCL spherulites is almost independent of the PLLA content while the overall isothermal crystallization rate of PCL within PCL/PLLA blends decreases first and then increases at a given crystallization temperature, indicating that the addition of PLLA components shows a weak effect on the growth rate of the PCL but mainly on the generation of nuclei. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号