首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of bonded and unbonded caps in testing very high strength concrete cylinders has been investigated experimentally. A hundred and ninety-two concrete cylinder specimens of 150-mm diameter and 300-mm height were cast and tested using packing with softboard, neat cement paste, neoprene pad and sulfur mortar. The design strength level of 75-100 MPa was achieved using water-cementitious material ratios of 0.22, 0.26 and 0.31. The results of the study were compared considering compressive strength and static elastic moduli values. A two-way analysis of variance was performed at a .01 level of significance in order to compare the effect of end conditions. It was found that the overall mean compressive strengths of specimens capped with neat cement paste, neoprene pad sulfur mortar were not significantly different. The packed specimens exhibited a significant difference from the others. On the other hand, there was no statistical difference in the static elastic moduli values when different capping types were used. Several modulus prediction equations were also examined. Experimental values were consistently higher than the predicted values.  相似文献   

2.
通过对多组板式橡胶支座力学试验数据的分析,对JT/T4-2019标准中抗压弹性模量标准值计算公式中计算系数的取值进行了探讨,对影响板式橡胶支座力学性能合格率的因素进行了分析  相似文献   

3.
Nanocomposites of magnetic nanoparticles and polymer matrices combine the properties of their components, and as such are good examples of functional nanomaterials with excellent application potential. Against this background, experimental and theoretical studies of such composites are of great interest. In this study we aim to provide insight into the static and dynamic magnetic response, as well as the dielectric response, of magnetic nanocomposites subjected to external magnetic and electric fields. We directly compare the behavior of polyurethane films doped with superparamagnetic Fe3O4, and blocked ferromagnetic CoFe2O4 nanoparticles. While a reversible, Langevin magnetization curve is observed for Fe3O4@PU films, hysteretic magnetic behavior is found in case of CoFe2O4@PU films. The hysteresis observed for CoFe2O4 nanoparticles can be explained by interactions at the interface between particles and polymer matrix in conjunction with its ferromagnetic nature. The results of dielectric spectroscopy experiments revealed different effects of Fe3O4 and CoFe2O4 nanoparticles on polymer dynamics.  相似文献   

4.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   

5.
Lili Cui  P.J. Yoon 《Polymer》2008,49(17):3762-3769
Part 1 of this series showed that the purification level and surfactant loadings of organoclays significantly affect their thermal stability; the higher rate of degradation of as-received commercial organoclay is primarily a result of excess surfactant that is intentionally or unintentionally part of the commercial organoclay. Polypropylene nanocomposites and nylon 6 nanocomposites were formed through melt processing to assess the practical consequences, in terms of nanocomposite formation and performance, of using a purified version of the organoclay with no excess surfactant and a lower rate of thermal degradation versus using the as-received organoclay. The properties and morphology of polymer-clay nanocomposites based on both as-received and purified organoclays were evaluated by TEM, WAXS, and mechanical testing. The results from the different techniques were generally consistent with each other suggesting that the differences in thermal stability of organoclays do not appear to have a significant effect on the morphology and properties of the nanocomposites formed from them.  相似文献   

6.
The additions of C2H2, CH4 and H2 in hybrid PVD-PECVD of W-C:H coatings deposited using High Power Impulse Magnetron Sputtering (HiPIMS) and High Target Utilization Sputtering (HiTUS) were investigated to determine their effects on the content and chemical composition of the amorphous carbon-based boundary phase and mechanical properties of the coatings. Substantial differences were observed: CH4 always produced higher concentrations of hydrogen and lower concentrations of carbon than C2H2 and HiPIMS resulted in higher contents of amorphous carbon-based boundary phase and higher levels of its hydrogenation than HiTUS. The detrimental effects of higher carbon and hydrogen contents in the boundary phase on hardness and indentation modulus were attributed to the consumption of CC bonds by CH bonds during hydrogenation and reduction of cross-linking of the polymeric network in the boundary phase. The HiPIMS W-C:H coatings deposited with acetylene and hydrogen exhibited medium (∼20 GPa) hardness and elastic modulus (200–220 GPa) with HIT/EIT > 0.1 suggesting improved toughness and wear resistance. These properties were attributed to the optimum combination of hydrogenation, hybridization and cross linking in the carbon-based boundary phase.  相似文献   

7.
Nanocomposites made from polypropylene and as-received graphite were prepared by solid-state shear pulverization (SSSP) as a function of graphite loading (0.3-8.4 wt%). X-ray diffraction indicates that SSSP employing harsh pulverization conditions yields substantial graphite exfoliation at 0.3-2.7 wt% graphite content with less exfoliation being achieved at higher graphite content. With increasing graphite content, thermal degradation temperature and non-isothermal onset crystallization temperature increase substantially (by as much as 35 and 23 °C relative to neat polypropylene) while isothermal crystallization half-time decreases dramatically. In contrast, Young’s modulus and tensile yield strength exhibit maxima (∼100% and ∼60% increases, respectively, relative to neat polypropylene) at 2.7 wt% graphite content, with all nanocomposites retaining high elongation at break values except at the highest filler loading. Electrical conductivity measurements indicate percolation of graphite at 2.7 wt% and higher graphite content, consistent with rheology measurements showing the presence of a solid-like response of melt-state shear storage modulus as a function of frequency. Significant tunability of graphite exfoliation and property enhancements is demonstrated as a function of SSSP processing.  相似文献   

8.
H.A. Stretz  D.R. Paul 《Polymer》2006,47(26):8527-8535
Based on enhancement in exfoliation for polyolefin-g-maleic anhydride composites with the addition of as little as 1 wt% maleic anhydride (MA), the effect of MA in styrene–maleic anhydride copolymer (SMA)-based nanocomposites was studied. SMA nanocomposites were mixed using a DSM melt compounder followed by injection molding in a pneumatic bench top molder. These materials produced the same modulus enhancement and TEM-based areal particle densities on a weight percent basis as SAN-based nanocomposites from a previous study, but the areal TEM-based particle densities remained lower overall than literature values for polyolefin-g-MA mixtures. This behavior is explained by repulsive interactions between styrene and the alkyl tail of the surfactant, suggesting that polar surfactant tails could lead to improved exfoliation in styrene copolymer-based/montmorillonite nanocomposites. The role of increased melt viscosity and shearing on particle dispersion as MA is added to the copolymer is discussed.  相似文献   

9.
Suprakas Sinha Ray  Mosto Bousmina   《Polymer》2005,46(26):12430-12439
Poly(butylene succinate-co-adipate) (PBSA)/layered silicate nanocomposites were prepared by melt extrusion of PBSA and three different types of commercially available organically modified montmorillonite (OMMT). Using three types of OMMT modified with three different kinds of surfactants, the effect of organic modification on nanocomposites was investigated by focusing of three major aspects: morphological study, property measurements, and melt rheological behavior under both small and large deformation flows. X-ray diffraction (XRD) patterns revealed that increasing the level of interactions (miscibility) between the organic modifier and PBSA matrix increases the tendency of the silicate layers to delaminate and distributed nicely within the PBSA matrix. Transmission electron micrographic (TEM) observations showed that the ordering of silicate layers in PBSA matrix is well matched with the XRD patterns. Thermal analysis revealed that extent of crystallinity of PBSA matrix is directly related to the extent of exfoliation of silicate layers in the nanocomposites. Dynamic mechanical analysis and tensile property measurements showed concurrent improvement in mechanical properties when compared to the neat PBSA and the extent of improvement is directly related to the extent of delamination of silicate layers in the PBSA matrix. The same tendency was also observed in melt rheological measurements.  相似文献   

10.
Oleate-containing layered double hydroxides of zinc aluminum (ZnAl) and magnesium aluminum (MgAl) were used to prepare nanocomposites of polyethylene, poly(ethylene-co-butyl acrylate) and poly(methyl methacrylate). The additives and/or their polymer composites were characterized by X-ray diffraction, FTIR, elemental analysis, thermogravimetric analysis, mechanical testing, and cone calorimetry. The unusual packing of the monounsaturated oleate anions in the gallery of these LDHs facilitates the dispersion of these nanomaterials. The inorganic LDH protects the polymer from thermal oxidation, shown by enhancement of the thermal and fire properties of the corresponding polymer nanocomposites. There is a qualitative difference in the morphology of the two LDHs in PE and PMMA. ZnAl is better dispersed in PE while MgAl is better dispersed in PMMA. The zinc-containing material led to a large reduction in the peak heat release rate in polyethylene, while the magnesium-containing material led to enhancement of the fire properties of the more polar poly(methyl methacrylate). These fire properties are consistent with the morphological differences. Neither of these LDHs shows efficacy with poly(ethylene-co-butyl acrylate), which indicates a selective interaction between the LDH and the various polymers.  相似文献   

11.
The effect of the addition of various concentrations of cellulose nanofibers (CNF) on the thickness, solubility, morphology, mechanics, water vapor permeability and optical properties of biopolymers isolated from whey protein produced by the casting method was studied. The results show that the addition of CNF did not cause significant variation in the thickness of the films and resulted in nanocomposites with lower solubility and water vapor permeability. Scanning electron microscopy analysis showed that the films obtained with up to 4% of CNF showed good dispersion of the nanofibers in the whey protein matrix. The results of mechanical tests showed that the nanofibers acted as reinforcing material resulting in more resistant and less flexible films. © 2017 Society of Chemical Industry  相似文献   

12.
Nanocomposites with both organically modified and unmodified silicate have been prepared by an extrusion process using low and high molecular weight grades of PA6 and a low MW grade of PA66. Mechanical properties have been tested at temperatures ranging from 20 to 120 °C. The modulus increase in all nanocomposites with organically modified nanocomposites is similar: at room temperature an increase in the modulus of approximately 10% for each wt% of silicate is found. PA66 nanocomposites display an identical normalized modulus increase as PA6 nanocomposites, while unmodified silicate nanocomposites show a smaller increase in the modulus. The yield stress also increases with the addition of layered silicate. Low MW PA6 and PA66 nanocomposites show brittle fracture behaviour at room temperature, while high MW PA6 nanocomposites are ductile. With increasing temperature all nanocomposites become ductile at a certain temperature.  相似文献   

13.
The present article addresses the variations observed in porosity and flexural and compressive strength in two types of cement mortar when submerged in pig slurry. The tests were conducted in a 100 m3 experimental lagoon. The mortars were exposed to three types of environments for 36 months: two submerged in the test lagoon, at two different depths, and one outside it. Bending and compression measurements were taken after 3, 12, 24, 36 and 48 months. In addition, 3, 24, 36 and 48 month specimens were tested for total porosity and pore-size distribution. Changes in the mineralogical characteristics of the mortars after 24, 36 and 48 months were also recorded. The strength studies showed that the load capacity attained by the two cements was similar after 48 months, the use of more expensive 42.5 sulphate-resistant cement is not justified. The XRD results showed no evidence in any of the cements of precipitation originating in the ions in the aggressive medium.  相似文献   

14.
Polylactide nanocomposites containing different loadings of nanosilica were prepared by employing bulk ring opening polymerization from lactide. Nanosilica was used as such and after surface treatment with different amounts of two distinct silanes. The effects on the properties of the material were evaluated comparing the samples containing organosilane‐modified nanosilica with poly(lactic acid) (PLA) containing unmodified nanosilica. A standard linear PLA and an industrial “film grade” PLA (PLA Natureworks 4032D) were used as reference. Pure silica tends to decrease the molecular weight of the material, deactivating the catalytic system but when silanes are present on the surface, molecular weights are similar to the ones of standard and industrial PLA. Transmission electron microscopy analysis shows that silanes improve the dispersion of the mineral, while rheologic curves suggest that when silanes are present melt viscosity increases markedly at zero shear and decreases faster as the shear rate increases. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Plasticized poly(lactic acid) (PLA)‐based nanocomposites filled with graphene nanoplatelets (xGnP) and containing poly(ethylene glycol) (PEG) and epoxidized palm oil (EPO) with ratio 2 : 1 (2P : 1E) as hybrid plasticizer were prepared by melt blending method. The key objective is to take advantage of plasticization to increase the material ductility while preserving valuable stiffness, strength, and toughness via addition of xGnP. The tensile modulus of PLA/2P : 1E/0.1 wt % xGnP was substantially improved (30%) with strength and elasticity maintained, as compared to plasticized PLA. TGA analysis revealed that the xGnP was capable of acting as barrier to reduce thermal diffusion across the plasticized PLA matrix, and thus enhanced thermal stability of the plasticized PLA. Incorporation of xGnP also enhanced antimicrobial activity of nanocomposites toward Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Listeria monocytogenes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41652.  相似文献   

16.
In this work, high‐density polyethylene (HDPE)‐based nanocomposites having different concentrations of Sepiolite (1–10 wt %) and compatibilizer, that is, PE‐graft‐maleic anhydride (PE‐g‐MA) of varying molecular weight and maleic anhydride content were prepared by melt compounding. The influence of Sepiolite amount and compatibilizer polarity and molar mass on the crystallization behavior [differential scanning calorimeter (DSC) and X‐ray diffraction (XRD)], rheological properties (oscillatory rheometer) and dimensional stability [dynamic mechanical analyzer (DMA) and heat deflection temperature (HDT)] of the nanocomposites was investigated. It was found that Sepiolite did not affect the crystallization behavior of HDPE. The rheological results show that the incorporation of Sepiolite into HDPE matrix up to 10 wt % increases the complex viscosity of polymer. Storage modulus and loss modulus both in oscillatory rheometry and in DMA were highest for nanocomposite prepared using 10 wt % Sepiolite owing to the improved mechanical restrain by the dispersed phase. In the presence of compatibilizer, the values of storage modulus and loss modulus were lower as compared to uncompatibilized nanocomposites at same loading of Sepiolite. The reduction in modulus is more pronounced in composites prepared using compatibilizer of lower molar mass as compared to those prepared using higher molar mass compatibilizer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45197.  相似文献   

17.
The influences of surface treatment and the concentration of boehmite alumina (BA) particles on polypropylene and polystyrene (PS) (80/20) blends produced via melt compounding were examined. The results show that p‐toluene sulfonic acid‐treated BA particles yielded the highest stiffness improvement (27.5%), followed by untreated particles (25.7%), and dodecylbenzene sulfonic acid‐treated BA particles (8.5%). Transmission electron microscopy revealed that p‐toluene sulfonic acid‐treated BA particle agglomerates were dispersed in the PS phase, whereas untreated particles formed agglomerations at the interfaces. Dodecylbenzene sulfonic acid‐treated particles were poorly dispersed in both matrices. Differential scanning calorimetry showed that both untreated and p‐toluene sulfonic acid‐treated BA particles acted as nucleating agents in the blend because of the shifting of crystallization peaks to higher temperatures by 12 and 8 °C, respectively. A significant increase in decomposition temperatures occurred upon 7 wt % loading of all types of BA particles into the blend. Heat deflection temperature measurements showed that all types of BA particles improved the thermal properties of the blend. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46376.  相似文献   

18.
Semi-biodegradable polypropylene (PP)/poly(lactic acid) (PLA) (50:50 vol%) blend loaded with 0.6 vol% of pristine carbon nanotube (CNT) were prepared by melt compounding the components using different sequential mixing strategies: (i) all components together (PP/PLA/CNT); (ii) PP first mixed with CNT (PP@CNT/EVA) and (iii) EVA first mixed with CNT (EVA@CNT/PP). The composites presented co-continuous structure and the CNT selectively localized inside the PP phase or at the interface, regardless the order of the CNT addition into the mixing. These features were confirmed by selective extraction experiments and morphological studies: optical, scanning electron, and transmission electron microscopy. However, the preferential localization at the interface was predicted from wetting coefficient, determined from interfacial energy. Higher electrical conductivity values were achieved by using the one-step mixing approach, were all components were mixed together, whose value of around 10−4 S/m was achieved by adding 0.6 vol% of CNT to the blend. The compatibilization with polypropylene-g-maleic anhydride increased the melt viscosity of the blend and composite but did not affect the conductivity or the tensile properties of the CNT-based composite.  相似文献   

19.
To model the melt‐spinning process of biodegradable as‐spun linear aliphatic–aromatic copolyester fibers, a fraction factorial experimental design and appropriate statistical analysis for the 32 screening trials involving five control parameters were used. Because of their central role in the production processes and end use textiles, it is important to simulate the mechanical and thermal shrinkage properties of AAC fibers. Concise statistical models of fiber behavior are based on factorial experimental design data. Process's data are collected, analyzed, and mathematical models created to predict the diameter, tenacity, elongation at break, modulus, and thermal shrinkage of the spun fiber in terms of random variables and their associated probability distributions. The theoretical regression models obtained form the main source code in the enhanced forecasting program, which presents the melt‐spinning process of aromatic–aliphatic copolyester fibers. Factorial statistical approaches, based on over indicated region levels of melt‐spinning process parameters, are given in terms of assumptions and theory to produce biodegradable, environmentally friendly fibers for different applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
陈丹  舒婷  廖世军 《化工进展》2013,(5):1053-1059
核壳结构低铂催化剂具有可大幅提高贵金属铂的利用率、有效降低燃料电池铂使用量及成本的重要特点,被誉为质子交换膜燃料电池大规模商业化的希望之所在,相关研究已成为燃料电池领域最为热门的课题之一。本文综述了近年来提出的各种高性能核壳结构催化剂的设计思路及新型制备技术,介绍了各种不同组成和结构的核壳结构催化剂性能及特点以及在核壳结构催化剂表征技术方面的最新进展。最后对核壳结构催化剂制备技术的发展和应用前景进行了展望:通过发展或改进制备工艺,制备各种形貌组成可控以及高活性低Pt载量的核壳结构催化剂,有望实现质子交换膜燃料电池商业化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号