首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article is concerned with the effect of the inherent matrix properties (matrix molar mass and crystallinity) as well as the temperature on the impact behaviour of rubber toughened semicrystalline polyethylene terephthalate (PET). The dispersed phase consists of a blend of an ethylene-co-propylene rubber (EPR) and a copolymer of ethylene and 8 wt% glycidyl methacrylate (E-GMA8) acting as a compatibilising agent, leading to PET/(EPR/E-GMA8) blends. The influence of the matrix molar mass on the impact behaviour of rubber toughened PET is found to primarily originate from its effect on the blend phase morphology, rather than from an inherent effect of the molar mass itself. The dispersed phase particle size is seen to decrease with increasing PET molar mass. A direct correlation between the impact strength and the interparticle distance could be established. A critical interparticle distance (IDc) of 0.1 μm could be determined, independent of the PET molar mass. The brittle-ductile transition temperature (Tbd) of the blends with a varying matrix molar mass also displayed a strong correlation with the interparticle distance, independent of the matrix molar mass. However, this correlation appears to depend on the crystalline characteristics of the PET matrix material since an incompletely crystallised PET matrix leads to an increase of the Tbd.  相似文献   

2.
The deformation mechanisms of rubber toughened polyethylene terephthalate (PET) are studied with fractography of impact fractured samples and tensile dilatometry. The dispersed phase consists of a mixture of an ethylene-co-propylene rubber (EPR) and a compatibilising agent (E-GMA8: copolymer of ethylene and 8 wt% of glycidyl methacrylate). It is found that the ductile fracture behaviour, above the brittle-ductile transition temperature (Tbd), consists of a high degree of rubber cavitation and extensive matrix shear yielding, both in the fracture plane and the stress whitened zone surrounding the crack. A steep increase in the volume strain upon tensile loading confirms the presence of the rubber voiding mechanism in the PET/(EPR/E-GMA8) blend system. It is seen that the stress whitened zone below the impact fracture surface consists of different zones, depending on the test temperature. Below Tbd, a layer of a highly deformed structure is followed by a cavitation layer containing only a limited number of cavitaties. Increasing the temperature, causes the deformation layer to be replaced by a zone lacking structure. It is believed that part of the fracture energy has been dissipated in the form of heat inducing a relaxation in the structure. Dynamical mechanical analysis under superimposed axial stresses reveals that the dispersed rubber particles internally cavitate in the presence of volume strain. At increased volume strains, the biaxial stress state in the cavitated particle is disturbed, resulting in the rupture of the rubber chains closest to the void by a tearing mechanism; revealing that the rubber particle is damaged upon cavitation.  相似文献   

3.
Toughening of brittle thermoplastics by addition of a separated rubber phase has been an important area of research in industrial material development. Several research groups have focused their efforts to understand the role of the dispersed rubber particles for toughening of plastics. As a result of the research work, the debonding of grafted rubber particles from the surrounding rigid matrix and as well the internal rupture of particles, i.e., cavitations, were considered as a possible dominating contribution of particles to toughening. Recently a method for the detection of rubber cavitation in rubber toughened thermoplastics, based on the observation of the rubber cavitation phenomena occurring during a cooling procedure and detected by means of thermal contraction measurements, has been developed by Dijkstra and co‐workers. During such experiments an S‐shaped deviation from linear thermal contraction has been observed. This behavior was attributed to the cavitation of rubber particles under thermally induced hydrostatic tensions during cooling. The present paper is aimed at showing that the observed S‐shaped deviation from linear thermal contraction during cooling reoccurs during subsequent cooling steps if an appropriate thermal loading of the samples takes place after the first cooling. This result provides an even stronger evidence that the S‐shaped deviation from linear thermal contraction during cooling is indeed caused by particle cavitation. It is also shown that the cavitation behavior of rubber particles in toughened thermoplastics depends strongly on thermal history, rubber phase volume of the sample under investigation and experimental conditions as well. Based on these results the method has to be used very carefully for a general quantitative comparison of different rubber modifiers in toughened plastics. However, such contraction tests can be considered as an additional tool to understand basic deformation behavior of rubber modified thermoplastics.  相似文献   

4.
Poly(propylene carbonate) (PPC) modified with CBS‐UFPR rubber particle was used as an example to explore the abnormal increase of glass transition temperature (Tg) of thermoplastics modified with rubber particle. TEM and AFM results showed that CBS‐UFPR was dispersed well in PPC with diameter of about 100 nm. The concentration and size of free‐volume in blends were measured by PALS, which indicated the existence of interfacial interaction between PPC and CBS‐UFRP. A schematic two‐layer model was proposed and the thickness of the interfacial layer was calculated. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
A new type of rigid PVC compound with higher toughness and higher heat resistance was prepared by using a new type of PVC modifier, ultrafine full-vulcanized powdered rubber (UFPR). The UFPRs used in this paper were butadiene nitrile UFPR-1 (NBR-UFPR-1) with particle size of about 150 nm and butadiene nitrile UFPR-2 (NBR-UFPR-2) with particle size of about 90 nm. Dynamic mechanical thermal analysis (DMTA) showed that glass transition temperature (Tg) of PVC in compounds increased from 77.52 °C of neat PVC to 82.37 and 85.67 °C, while the notched impact strengths increased from 3.1 kJ/m2 of neat PVC to 5.2, 5.5 kJ/m2, respectively. It can be found that both Tg and toughness of PVC have been improved simultaneously, and the smaller the particle size of NBR-UFPRs, the higher the Tg and the impact strength. The property could be attributed to larger interface and more interfacial interaction between NBR-UFPRs and PVC matrix. Transmission electron microscopy (TEM) showed that NBR-UFPRs could be well dispersed in PVC matrix.  相似文献   

6.
Brittle-ductile transition in PP/EPDM blends: effect of notch radius   总被引:2,自引:0,他引:2  
The toughness of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends was studied over wide ranges of EPDM content and temperature. In order to study the effect of notch radius (R), the toughness of the samples with different notch radii was determined from Izod impact test. The results showed that both toughness and brittle-ductile transition (BDT) of the blends were a function of R, respectively. At test temperatures, the toughness tended to decrease with increasing 1/R for various PP/EPDM blends. Moreover, the brittle-ductile transition temperature (TBT) increased with increasing 1/R, whereas the critical interparticle distance (IDc) reduced with increasing 1/R. Finally, it was found that the different curves of IDc versus test temperature (T) for different notches reduced down to a master curve if plotting IDc versus TBTm-T, where TBTm was the TBT of PP itself for a given notch, indicating that TBTm-T was a more universal parameter that determined the BDT of polymers. This conclusion was well in agreement with the theoretical prediction.  相似文献   

7.
S. Saeki  F. Wang  Y. Tanaka 《Polymer》2006,47(21):7455-7459
An equation of state for zero internal pressure in rare gas solids and semi-crystalline polymers has been determined based on the empirical functions of thermal pressure coefficient γV with respect to volume at constant pressure. The experimental data of PVT over wide range of temperature and pressure published by Anderson and Swenson and Syassen and Holzapfel for rare gas solids and Olabisi and Simha and Zoller for semi-crystalline polymers are used to evaluate γV. The function of γV with respect to volume determined at constant pressure is given by where V0 is the volume at 0 K, A, ? and c are constants. The function of internal pressure Pi = γVT − P with respect to temperature at constant pressure is determined by converting the function of γV(V) to a function of temperature γV(T). An empirical equation of state for zero internal pressure determined by pressure P, volume V and temperature T at which Pi = 0 is expressed by PV/RT=CDV for rare gas and semi-crystalline polymer where C and D are constants. The practical meaning of the equation of state for Pi = 0 in the semi-crystalline polymers has been discussed.  相似文献   

8.
Wei Jiang  Donghong Yu  Bingzheng Jiang 《Polymer》2004,45(19):6427-6430
It was theoretically pointed out that the product of the yield stress and yield strain of matrix polymer that determined the brittle-ductile transition (BDT) of particle toughened polymers. For given particle and test condition, the higher the product of the yield stress and the yield strain of the matrix polymer, the smaller the critical interparticle distance (IDc) of the blends was. This was why the IDc (0.15 μm) of the polypropylene (PP)/rubber blends was smaller than that (0.30 μm) of the nylon 66/rubber blends, and the IDc of the nylon 66/rubber blends was smaller than that (0.60 μm) of the high density polyethylene (HDPE)/rubber blends.  相似文献   

9.
The segmental dynamics of bisphenol-A-polycarbonate (BPA-PC) are studied as a function of temperature (in the range from 143 to 473 K) and pressure (0.1-300 MPa) within the frequency range from 3 × 10−3 to 1 × 106 Hz using dielectric spectroscopy aiming at extracting the more relevant parameter associated with the liquid-to-glass transition. Rheological measurements are also made in the temperature range from 408 to 513 K for comparison. The dynamic results coupled with the equation of state reveal that both density and thermal energy control the segmental dynamics with density being the most important variable in the vicinity of the transition. This is documented by independent estimates of the value of the dynamic ratio EV/H (∼0.44). This low value of the dynamic ratio is discussed in terms of the packing irregularities and large monomer volume of BPA-PC. In addition, the pressure coefficient of Tg (dTg/dP ∼ 0.52 K/MPa) is one of the highest for a polymeric substance.  相似文献   

10.
J.J. Huang 《Polymer》2006,47(2):639-651
The toughening effect of two types of elastomers based on ethylene/α-olefin copolymers, viz, an ethylene/propylene copolymer (EPR) with its maleated version, EPR-g-MA, and an ethylene/1-octene copolymer (EOR) with its maleated versions, EOR-g-MA-X% (X=0.35, 1.6, 2.5), for two classes of polyamides: semi-crystalline nylon 6 versus an amorphous polyamide (Zytel 330 from DuPont), designated as a-PA, was explored. The results are compared with those reported earlier based on a styrenic triblock copolymer having a hydrogenated midblock, SEBS, and its maleated version, SEBS-g-MA, elastomer system. Izod impact strength was examined as a function of rubber content, rubber particle size and temperature. All three factors influence the impact behavior considerably for the two polyamide matrices. The a-PA is found to require a somewhat lower content of rubber for toughening than nylon 6. Very similar optimum ranges of rubber particle sizes were observed for ternary blends of EOR-g-MA/EOR with each of the two polyamides while blends based on mixtures of EPR-g-MA/EPR and SEBS-g-MA/SEBS (where the total rubber content is 20% by weight) show only an upper limit for a-PA but an optimum range of particle sizes for nylon 6 for effective toughening. Higher EPR-g-MA contents lead to lower ductile-brittle transition temperatures (Tdb) as expected; however, a-PA binary blends with EPR-g-MA have a much lower Tdb than do nylon 6 blends when the content of the maleated elastomer is not high. A minimum in plots of ductile-brittle transition temperature versus particle size appears for ternary blends of each of the matrices with EOR-g-MA/EOR; blends based on SEBS-g-MA/SEBS, in most cases, show higher ductile-brittle transition temperatures, regardless of the matrix. However, blends with EPR-g-MA/EPR show comparable Tdb with those based on EOR-g-MA/EOR for the amorphous polyamide but show the lowest ductile-brittle transition temperatures for nylon 6 within the range of particle sizes examined. For the blends with a bimodal size distribution, the global weight average rubber particle size is inappropriate for correlating the Izod impact strength and ductile-brittle transition temperature. In general, trends for this amorphous polyamide are rather similar to those of semi-crystalline nylon 6.  相似文献   

11.
Abstract

The performances of two contrasting core–shell impact modifiers, in blends with polycarbonate (PC), poly (methyl methacrylate) (PMMA), and poly (styrene-co-acrylonitrile) (PSAN), have been evaluated using tensile impact tests at temperatures between -80 and +50°C. In both modifiers, each individual particle has a 10 nm thick outer shell of PMMA, which is grafted to the rubber phase. In the case of modifier PB, the core of the particle is a 200 nm diameter homogeneous sphere of polybutadiene, with a T g of -86°C. Modifier PBA has a 260 nm core of PMMA, surrounded by a 20 nm inner shell of poly (butyl acrylate-co-styrene), which has a T g of -17°C. Tensile impact tests show that the T g of the rubber does not necessarily control the brittle–ductile transition temperature T BD. Both the PC–PB and PC–PBA blends exhibit some ductility at -80°C, although neither blend is as tough as plain PC at any temperature. The blend of PB with PMMA shows a modest increase in toughness above -40°C and there is a similar but rather larger increase in the toughness of the PMMA–PBA above -20°C. In PSAN blends, the PBA modifier is the more effective toughening agent ahove 0°C. It is concluded that these differences originate from differences in the balance between shear yielding and crazing in the matrix polymer, and in the ability of cavitated rubber particles to prevent crazes from turning into cracks. In PMMA and PSAN blends, the PBA modifier is the more effective toughening agent at 23°C because of its rigid core, which enables stable rubber fibrils both to form and to contribute to local strain hardening, thereby stabilising the yield zone.  相似文献   

12.
In this work we formulate a new glass theory and investigate its suitability for describing the mechanical response of thermoplastic elastomers composed of styrenic-block copolymers. These materials are composed of glassy domains of polystyrene, which physically link soft rubbery chain segments made of either polybutadiene or polyisoprene. We demonstrate that the crossover in the shift factors, observed experimentally to change from Williams-Landel-Ferry to Arrhenius behavior passing through a characteristic crossover temperature T from below, coincides with the crossover from power-law to stretched-exponential behavior of the stress relaxation found in recent tensile experiments. Moreover, we show that the characteristic crossover temperature T is identical with the underlying true equilibrium second-order phase transition temperature T2 of the polystyrene crosslinks, predicted by the thermodynamic theory of Gibbs and Di Marzio for pure glassy polystyrene in the infinite-time limit. By combining the recently introduced theory of Di Marzio and Yang with the significant-structure theory of Eyring and Ree, we develop a new glass theory, which is capable of explaining the mechanical response of multiphase as well as pure glassy materials. Moreover, we show a clear evidence for the existence of T2 postulated in 1950s for pure glasses and hotly debated since then.  相似文献   

13.
《Drying Technology》2013,31(4):871-886
Abstract:

As a dry amorphous food system absorbs moisture or increases in temperature, the brittle food becomes soft and deformable. The temperature at which this transition occurs in the food system for a given moisture content is called the brittle-ductile transition temperature (Tb). Three different methods of determining this transition were used. The method that was chosen to best describe the food system was the intersection of brittle strength and yield strength measured in flexure as a function of both temperature and moisture content. Tb decreased linearly with increasing moisture content with a strong linear relationship (r2 = 0.98).  相似文献   

14.
Souheng Wu 《Polymer》1985,26(12):1855-1863
The effects of rubber particle size and rubber-matrix adhesion on notched impact toughness of nylon-rubber blends are analysed. A sharp tough-brittle transition is found to occur at a critical particle size, when the rubber volume fraction and rubber-matrix adhesion are held constant. The critical particle size increases with increasing rubber volume fraction, given by dc = Tc{(πr)13 ? 1}?1, dc is the critical particle diameter, Tc the critical interparticle distance, and ør the rubber volume fraction. The critical interparticle distance is a material property of the matrix, independent of rubber volume fraction and particle size. Thus, the general condition for toughening is that the interparticle distance must be smaller than the critical value. Van der Waals attraction gives sufficient adhesion for toughening. Interfacial chemical bonding is not necessary. Even if there is interfacial chemical bonding, a polymer-rubber blend will still be brittle, if the interparticle distance is greater than the critical value. The minimum adhesion required is about 1000 J m?2, typical for van der Waals adhesion. In contrast, chemical adhesion is typically 8000 J m?2. The present criterion for toughening is proposed to be valid for all polymer—rubber blends which dissipate the impact energy mainly by increased matrix yielding.  相似文献   

15.
The effect of chlorinated polyethylene (CPE) content and test temperature on the notched Izod impact strength and brittle‐ductile transition behaviors for polyvinylchloride (PVC)/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites is studied. The CPE content and the test temperature regions are from 0–50 phr and 243–363 K, respectively. It is found that the optimum nano‐CaCO3 content is 15 phr for PVC/CPE/nano‐CaCO3 ternary composites. For both PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites, the impact strength is improved remarkably when the CPE content or test temperature is higher than the critical value, that is, brittle‐ductile transition content (CBD) or brittle‐ductile transition temperature (TBD). The TBD is closely related to the CPE content, the higher the CPE content, the lower the TBD. The temperature dependence of impact strength for PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites can be well simulated with a logistic fitting model, and the simulation results can be illustrated with the percolation model proposed by Wu and Jiang. DMA results reveal that both PVC and CPE can affect the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. When the CPE content is enough (20 phr), the CPE is more important than PVC for determining the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. Scanning electron microscopy (SEM) observations reveal that the impact fractured mechanism can change from brittle to ductile with increasing test temperature for these PVC systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Diglycidyl ether–bisphenol-A-based epoxies toughened with various levels (0–12%) of chemically reacted liquid rubber, hydroxyl-terminated poly(butadiene-co-acrylonitrile) (HTBN) were studied for some of the mechanical and thermal properties. Although the ultimate tensile strength showed a continuous decrease with increasing rubber content, the toughness as measured by the area under the stress-vs.-strain curve and flexural strength reach a maximum around an optimum rubber concentration of 3% before decreasing. Tensile modulus was found to increase for concentrations below 6%. The glass transition temperature Tg as measured by DTA showed no variation for the toughened formulations. The TGA showed no variations in the pattern of decomposition. The weight losses for the toughened epoxies at elevated temperatures compare well with that of the neat epoxy. Scanning electron microscopy revealed the presence of a dual phase morphology with the spherical rubber particles precipitating out in the cured resin with diameter varying between 0.33 and 6.3 μm. In contrast, a physically blended rubber–epoxy showed much less effect towards toughening with the precipitated rubber particles of much bigger diameter (0.6–21.3 μm).  相似文献   

17.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

18.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

19.
Amino‐functionalized multiwalled carbon nanotubes (MWCNT‐NH2s) as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA) toughened with amine‐terminated butadiene–acrylonitrile (ATBN). The curing kinetics, glass‐transition temperature (Tg), thermal stability, mechanical properties, and morphology of DGEBA/ATBN/MWCNT‐NH2 nanocomposites were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis, a universal test machine, and scanning electron microscopy. DSC dynamic kinetic studies showed that the addition of MWCNT‐NH2s accelerated the curing reaction of the ATBN‐toughened epoxy resin. DSC results revealed that the Tg of the rubber‐toughened epoxy nanocomposites decreased nearly 10°C with 2 wt % MWCNT‐NH2s. The thermogravimetric results show that the addition of MWCNT‐NH2s enhanced the thermal stability of the ATBN‐toughened epoxy resin. The tensile strength, flexural strength, and flexural modulus of the DGEBA/ATBN/MWCNT‐NH2 nanocomposites increased increasing MWCNT‐NH2 contents, whereas the addition of the MWCNT‐NH2s slightly decreased the elongation at break of the rubber‐toughened epoxy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40472.  相似文献   

20.
《Ceramics International》2020,46(4):4786-4794
Vanadium dioxide (VO2) is considered to be a promising candidate for energy-efficient smart windows because of its special reversible Metal-Insulator Transition (MIT) near the ambient temperature. However, its use is constrained by its high transition temperature (TC) relative to the room temperature. In this paper, VO2 doped by boron, could achieve an outstanding metal-insulator phase transition property with a low TC (28.1 °C) close to the room temperature. This enhancement strongly contributes to the studies of the VO2-based smart windows. A limit doping level of around 9.0 at% is observed for the boron-doped VO2. Moreover, the particle size is getting smaller and more uniform and the particle distribution becomes more equal and compact with the continued increase in the doping content. Such uniform grain size and grain boundary conditions suppress the extension of the hysteresis loop (ΔT decreases from 25 °C to 7 °C). In addition, the TC first declines with the increase in the boron content and it starts to increase after reaching its minima of 28.1 °C at 6.0 at% doping level. This feature is the consequence of the competition between the inhibition on the phase transition caused by the V5+ and the promotion on the phase transition caused by the heterogeneous defect-nucleation sites. VO2 doped with 6.0 at% boron exhibits a favorable thermochromic performance with ΔTsol of 12.5% and Tlum up to 54.3%, which is promising for the smart windows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号