首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palmitic acid hexadecylthioester and other long-chain acyl thioesters have been prepared in high yield (80–85%, purity >98%) by solvent-free lipase-catalyzed thioesterification of fatty acids with alkanethiols in vacuo. A lipase B preparation from Candida antarctica was more effective than a lipase preparation from Rhizomucor miehei and, particularly, those from papaya latex and porcine pancreas. Lipase-catalyzed transthioesterification of fatty acid methyl esters with alkanethiols was less effective than thioesterification for the preparation of acyl thioesters. However, in transthioesterification, a lipase preparation from R. miehei was more effective than a lipase B preparation from C. antarctica. Lipases from papaya latex and porcine pancreas led to moderate conversions to acyl thioesters in both thioesterification and transthioesterification reactions, whereas only small proportions of thioesters were formed using lipase from Rhizopus arrhizus. Lipases from Chromobacterium viscosum and Candida rugosa were not effective at all.  相似文献   

2.
Elucidation of acyl migration was carried out in the Lipozyme RM IM (Rhizomucor miehei)-catalyzed transesterification between soybean phosphatidylcholine (PC) and caprylic acid in solvent-free media. A five-factor response surface design was used to evaluate the influence of five major factors and their relationships. The five factors—enzyme dosage, reaction temperature, water addition, reaction time, and substrate ratio—were varied on three levels together with two star points. Enzyme dosage, reaction temperature, and reaction time showed increased effect on the acyl migration into the sn-2 position of PC, whereas increased water addition and substrate ratio had no significant effect in the ranges tested. The best-fitting quadratic response surface model was determined by regression and backward elimination. The coefficient of determination (R 2) was 0.84, which indicates that the fitted quadratic model has acceptable qualities in expressing acyl migration for the enzymatic transesterification. Correlation was observed between acyl donor in the sn-2 position of PC and incorporation of acyl donor into the intermediate lysophosphatidylcholine. Furthermore, acyl migration into the sn-2 position of PC was confirmed by TLC-FID, as PC with caprylic acid was observed on both positions. Under certain conditions, up to 18% incorporation could be observed in the sn-2 position during the lipase-catalyzed transesterification.  相似文献   

3.
Lipidic extracts of Spodoptera littoralis pheromone glands submitted to acid methanolysis using: (i) sulfuric acid/methanol/benzene (0.1∶4∶2, by vol) at 90°C for 1 h; (ii) 12 N HCl/methanol (1∶2; vol/vol) at 90°C for 1 h, or (iii) 14% BF3-MeOH at 90°C for 1 h did not reveal the presence of either 11- or 12-hydroxytetradecanoic acid in the extracts, as concluded from the gas chromatography-mass spectrometry analyses. Under the above methanolysis conditions, a synthetic sample of methyl (14, 14, 15-2H3) 12-hydroxytetradecanoate remained unaltered. These results may indicate that formation of (E)-11-tetradecenoic acid from tetradecanoic acid does not occur in the pheromone gland by dehydration of an intermediate hydroxyacid. Acid methanolysis of a lipidic extract using BF3-MeOH led to the formation of a mixture of methoxy fatty acid methyl esters, identified by gas chromatography-mass spectrometry. These methoxy derivatives should arise from BF3-catalyzed addition of methanol to the double bond of the natural monounsaturated fatty acyl derivatives present in the gland. Thus, under the same conditions, a synthetic sample of methyl (Z)-11-tetradecenoate was partially transformed into methyl 11-methoxytetradecanoate and methyl 12-methoxytetradecanoate. This reaction might be a useful alternative procedure to obtain methoxy derivatives of olefins, which are very helpful for the structural characterization of the parent alkenes.  相似文献   

4.
The enantioselective acylation of racemic diisopropyl α‐ and β‐hydroxyphosphonates by hydrolases in t‐butyl methyl ether with isopropenyl acetate as acyl donor is limited by the narrow substrate specificity of the enzymes. High enantiomeric excesses (up to 99%) were obtained for the acetates of (S)‐diisopropyl 1‐hydroxy‐(2‐thienyl)methyl‐, 1‐hydroxyethyl‐ and 1‐hydroxyhexylphosphonate and (R)‐diisopropyl 2‐hydroxypropylphosphonate. The hydrolysis of a variety of β‐chloroacetoxyphosphonates by the lipase from Candida cylindracea and protease subtilisin in a biphasic system gives (S)‐β‐hydroxyphosphonates (ee 51–92%) enantioselectively. (S)‐2‐Phenyl‐2‐hydroxyethyl‐ and (S)‐3‐methyl‐2‐hydroxybutylphosphonates (ee 96% and 99%, respectively) were transformed into (R)‐2‐aminophosphonic acids of the same ee.  相似文献   

5.
Mats Hamberg 《Lipids》1991,26(6):407-415
The methyl esters of 9S,10S,13R-trihydroxy-11E-octadecenoic acid, 9S,10R,13S-trihydroxy-11E-octadecenoic acid, and 9S,10R,13R-trihydroxy-11E-octadecenoic acid were prepared from 9S-hydroperoxy-10E,12Z-octadecadienoic acidvia the epoxy alcohols methyl 10R,11R-epoxy-9S-hydroxy-12Z-octadecenoate and methyl 10S,11S-epoxy-9S-hydroxy-12Z-octadecenoate. The trihydroxyesters, as well as four stereoisomeric methyl 9,12,13-trihydroxy-10E-octadecenoates earlier prepared [Hamberg, M.,Chem. Phys. Lipids 43, 55–67 (1987)], were characterized by thin-layer chromatography, gas-liquid chromatography, mass spectrometry, and by chemical degradation. Availability of these chemically defined trihydroxyoctadecenoates made it possible to design a method for regio- and stereochemical analysis of 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids obtained from various sources. Application of the method revealed that the mixture of 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids formed during autoxidation of linoleic acid in aqueous medium contained comparable amounts of the sixteen possible regio- and stereoisomers. Furthermore, hydrolysis of the allylic epoxy alcohol, methyl 9S,10R-epoxy-13S-hydroxy-11E-octadecenoate, yielded a major trihydroxyoctadecenoate,i.e., methyl 9S,10S,13S-trihydroxyl-11E-octadecenoate, together with smaller amounts of methyl 9S,10R,13S-trihydroxy-11E-octadecenoate, methyl 9S,12R,13S-trihydroxy-10E-octadecenoate, and methyl 9S,12S,13S-trihydroxy-10E-octadecenoate.  相似文献   

6.
Summary Spontaneous copolymerizations of cyclic acyl phosphonite (SPO) and phosphite (SPI) with an electron-deficient vinyl monomer such as methyl acrylate (MA), methyl vinyl ketone (MVK), and acrolein (AL), gave the corresponding alternating copolymers. These copolymerizations took place without added initiator and proceeded through zwitterion intermediates. Copolymer structures 1a, 1b, 2 and 3 have been established, all of which were derived in a regiospecific manner of ambident anions. The scheme of the copolymerizations is presented.  相似文献   

7.
戴晓庭  孟枭  徐刚  吴坚平  杨立荣 《化工进展》2014,33(9):2421-2424
采用新型消旋催化剂耦合Novozym 435成功构建1-四氢萘胺的动态动力学拆分体系用于制备光学纯(R)-1-四氢萘胺。该反应存在着自催化酰胺化反应,会降低反应的对映体选择性。从改变酰基供体结构的角度出发来抑制这种自催化酰胺化反应,考察了不同酸部以及不同醇部的酰基供体对1-四氢萘胺动态动力学拆分反应的影响,发现随着酰基供体结构变得复杂,1-四氢萘胺动态动力学拆分反应结果也相应变得越好,当采用戊酸对氯苯酯作为酰基供体时,动态动力学拆分反应结果就可达到最佳,即转化率>99%,光学纯度eeP>99%。  相似文献   

8.
The triacylglycerols of winter butterfat were fractionated according to the type and degree of unsaturation into six fractions by silver ion high-performance liquid chromatography (Ag-HPLC). The acyl carbon number distribution of the triacylglycerols in each fraction was elucidated by reversed-phase HPLC and mass spectrometry (MS). The MS analysis of each fraction gave deprotonated triacylglycerol [M - H] ions which were produced by chemical ionization with ammonia. The daughter spectrum of each of the [M - H] ions provided information on its fatty acid constituents. Successful fractionation of triacylglycerols differing in the configuration of one fatty acyl residue by Ag-HPLC was important because geometrical isomers could not be distinguished by the MS system used. In addition to the fatty acid compositions, reversed-phase HPLC analysis demonstrated the purity of the collected fractions: molecules having acis-trans difference were separated nearly to the baseline. Triacylglycerols differing in the configuration of one fatty acyl residue were not equally distributed in relation to their acyl carbon numbers. This indicates that during the biosynthesis of triacylglycerols,cis- andtrans-fatty acids are processed differently. Although the fatty acid compositions of the corresponding molecular weight species of disaturatedtrans- and disaturatedcis-monoenoic triacylglycerols were similar, there may be differences in the amounts of different fatty acid combinations or in the distribution of fatty acids between the primary and secondary glycerol positions. In addition to the main components, it was possible to analyze minor triacylglycerols, such as molecules containing one odd-chain fatty acid, by the MS system used.  相似文献   

9.
Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l -serine and a fatty acyl thioester. While the AOS domain was strictly specific for l -serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl−coenzyme A (C18). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l -serine by a FAS with a cis-acting AOS off-loading domain.  相似文献   

10.
Hamberg M 《Lipids》1999,34(11):1131-1142
[1-14C]Linoleic acid was incubated with a whole homogenate preparation of potato leaves (Solanum tuberosum 1., var. Bintje). The methyl-esterified product was subjected to straight-phase high-performance liquid chromatography and was found to contain four major radioactive oxidation products, i.e., the epoxy alcohols methyl 10(S), 11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoate (14% of the recovered radioactivity) and methyl 12(R), 13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoate (14%), and the trihydroxy derivatives methyl 9(S), 10(S), 11(R)-trihydroxy-12(Z)-octadecenoate (18%) and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoate (30%). The structures and stereochemical configurations of these oxylipins were determined by chemical and spectral methods using the authentic compounds as references. Incubations performed in the presence of glutathione peroxidase revealed that lipoxygenase activity of potato leaves generated the 9- and 13-hydroperoxides of linoleic acid in a ratio of 95∶5. Separate incubations of these hydroperoxides showed that linoleic acid 9(S)-hydroperoxide was metabolized into epoxy alcohols by particle-bound epoxy alcohol synthase activity, whereas the 13-hydroperoxide was metabolized into α- and γ-ketols by a particle-bound allene oxide synthase. It was concluded that the main pathway of linoleic acid metabolism in potato leaves involved 9-lipoxygenase-catalyzed oxygenation into linoleic acid 9(S)-hydroperoxide followed by rapid conversion of this hydroperoxide into epoxy alcohols and a slower, epoxide hydrolase-catalyzed conversion of the epoxy alcohols into trihydroxyoctadecenoates. Trihydroxy derivatives of linoleic and linolenic acids have previously been reported to be growth-inhibitory to plant-pathogenic fungi, and a role of the new pathway of linoleic acid oxidation in defense reactions against pathogens is conceivable.  相似文献   

11.
l-Ascorbic acid and various polyunsaturated fatty acids (PUFA) were condensed at 55°C by the immobilized lipase Chirazyme l-2 in dry acetone to produce the unsaturated acyl ascorbates. The PUFA moieties of the products were much more resistant to autoxidation at 65°C and nearly 0% relative humidity than the corresponding unmodified PUFA. The effects of the molar ratio of ascorbic acid or linoleoyl ascorbate to linoleic acid on the autoxidation of linoleic acid were examined. The autoxidation of linoleic acid was effectively suppressed at molar ratios greater than or equal to 0.2 when either ascorbic acid or linoleoyl ascorbate was mixed with linoleic acid. The addition of lauroyl ascorbate, synthesized through the enzyme-catalyzed condensation of ascorbic acid and lauric acid in acetone, to docosahexaenoic acid also significantly suppressed the autoxidation of docosahexaenoic acid at molar ratios of ≥0.2.  相似文献   

12.
Acyltransferase activities responsible for the transfer of oleoyl moieties from oleoyl-CoA to various lipids have been examined in subcellular fractions of developing seeds of rape,Brassica napus L. In the absence of exogenous acyl acceptors, the microsomal and oil body fractions transferred oleoyl moieties mostly to phosphatidylcholines and phosphatidic acids, although there was substantial incorporation of the oleoyl moieties into monoacylglycerols, diacylglycerols and triacylglycerols. The soluble (150,000-g supernatant) fraction incorporated oleoyl moieties mainly into the neutral lipids (monoacylglycerols and diacylglycerols) and also exhibited a relatively high acyl-CoA hydrolase activity. In the presence of the exogenous acyl acceptors, lysophosphatidylcholine and lysophosphatidic acid, both microsomal and oil body fractions transferred most of the oleoyl moieties to phosphatidylcholines and phosphatidic acids, respectively. Other lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylonositol, were not very effective as acyl acceptors, nor were glycerol-3-phosphate, monoacylglycerols or diacylglycerols. In contrast, the soluble fraction showed little or no stimulation of acyltransfer in the presence of exogenous lysophospholipids but was able to utilize, to some extent, exogenous monoacylglycerols and diacylglycerols as acyl acceptors.  相似文献   

13.
Effects of water content, reaction time, and their relationships in the production of two types of specific-structured lipids (sn-MLM- and sn-LML-types: L-long chain fatty acids; M-medium chain fatty acids) by lipase-catalyzed interesterification in a solvent-free system were studied. The biocatalyst used was Lipozyme IM (commercial immobilized lipase). The substrates used for sn-MLM-type were fish oil and capric acid, and medium chain triacylglycerols and sunflower free fatty acids for sn-LML-type. The observed incorporation with the time course agrees well with the Michaelis-Menten equation, while the acyl migration is proportional to time within the range of 20 mol% acyl migration (MLM-type: M f =0.2225 T, R2=0.98; LML-type: M f =0.5618 T, R2=0.99). As water content (wt%, on the enzyme basis) increased from 3.0 to 11.6% for MLM-type and from 3.0 to 7.2% for LML-type in the solvent-free systems, the incorporation rates in the first 5 h increased from 3.34 to 10.30%/h, and from 7.29 to 11.12%/h, respectively. However, the acyl migration rates also increased from 0.22 to 1.12%/h and from 0.56 to 1.37%/h, respectively. Different effects in the production of two totally position-opposed lipids can be observed. Presumably these are caused by the different chain length of the fatty acids. The relationships between reaction time and water content are inverse and give a quantitative prediction of incorporation and acyl migration in selected reaction conditions and vice versa. The acyl migration can not be totally avoided in present systems, but can be reduced to a relatively low level. Acyl migration during the downstream processing has also been observed and other factors influencing the acyl migration are briefly discussed.  相似文献   

14.
Triacylglycerols of Finnish winter butterfat containing one saturated and two monoenoic fatty acyl residues were studied. With silver ion high-performance liquid chromatography (HPLC), molecules were separated according to the difference in the configuration of one fatty acyl moiety. The distribution of the saturatedcis,trans-dimonoenoic and saturatedcis,cis-dimonoenoic triacylglycerols according to their acyl carbon numbers was compared by means of reversed-phase HPLC and tandem mass spectrometry. Furthermore, two examples of the fatty acid composition of a specified molecular weight species were shown. The fatty acid compositions of corresponding saturatedcis,trans-dimonoenoic and saturatedcis,cis-dimonoenoic triacylglycerols were similar; however, there may be differences in the proportions of different fatty acid combinations or in the distribution of fatty acids between primary and secondary glycerol positions.  相似文献   

15.
The degradation of (+)-catechin in an oil-in-water emulsion using methyl dodecanate as an oil phase with or without ascorbic acid or acyl ascorbate was kinetically examined at 40 °C. The rate constant, k, of the first-order kinetics for the degradation with ascorbic acid or octanoyl ascorbate depended on the added amount, whereas the k value with hexadecanoyl ascorbate was independent of the amount. The k value for a smaller oil droplet with each ascorbate was lower than that for a larger oil droplet. Catechin did not partition well into the methyl dodecanate phase, but did adsorb slightly onto the interface between the methyl dodecanate and water. The suppressive effect of acyl ascorbate on the catechin degradation in the emulsion was lower than that of hydrophilic ascorbic acid at the low concentration, but the peroxidative ability also was lower. Most of the catechin molecules in the emulsion degraded in the water phase. The catechin degradation in the emulsion with small oil droplets depended on the acyl chain length of the ascorbates more than in large oil droplets.  相似文献   

16.
Structured lipids were synthesized by the acidolysis of corn oil by caprylic acid in supercritical carbon dioxide (SCCO2) with Lipozyme RM IM from Rhizomucor miehei. The effects of pressure and temperature on the reaction were studied. To compare the degrees of acyl migration in the SCCO2 and solvent-free reaction systems, the effects of reaction time on the degree of acyl migration were also studied. The highest mole percentage incorporation of caprylic acid (62.2 mol%) occurred at 24.13 MPa in SCCO2. The overall incorporation of caprylic acid in the SCCO2 system remained higher than that in the solvent-free system at every temperature tested. This trend was observed more clearly at lower temperatures (35–55°C) than at higher temperatures (65–75°C). Acyl migration with both reaction systems was low, with a negligible difference between them up to 12 h, after which the degree of acyl migration in the solvent-free system increased rapidly with time up to 24 h compared with the SCCO2 system.  相似文献   

17.
Various N‐acyl chitosans with propionyl‐, hexanoyl‐, nonanoyl‐, lauroyl‐, pentadecanoyl‐, and stearoyl‐groups were synthesized and self‐aggregated N‐acyl chitosan nanoparticles (CSNPs) were prepared by sonication. By the modification with N‐acyl groups, CSNPs increased their hydrophobic character and changed its structural features to be more suitable as a delivery carrier. The mean diameters of bovine serum albumin (BSA)‐loaded N‐acyl CSNPs ranged from 138 to 551 nm. Uniform particle size distribution of BSA‐loaded N‐acyl CSNPs was observed. The protein loading efficiency of N‐acyl CSNPs was about 94–95% with lower BSA concentration (0.1 mg/mL) and not significantly different with acyl chain length. With higher BSA concentration (1.0 mg/mL), however, the highest protein loading efficiency was observed with lauroyl and pentadecanoyl CSNPs. The results suggest that lauroyl and pentadecanoyl CSs are interesting candidates for protein delivery system. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Production of specific-structured lipids (SSL) by lipase-catalyzed interesterification has been attracting more and more attention recently. However, it was found that acyl migration occurs during the reaction and causes the production of byproducts. In this paper, the elucidation of acyl migration by response surface design was carried out in the Lipozyme IM (Rhizomucor miehei)-catalyzed interesterification between rapeseed oil and capric acid in solvent-free media. A five-factor response surface design was used to evaluate the influence of five major factors and their relationships. The five factors, water content, reaction temperature, enzyme load, reaction time and substrate ratio, were varied at three levels together with two star points. All parameters besides substrate ratio had strong positive influences on acyl migration, and reaction temperature was most significant. The contour plots clearly show the interactions between the parameters. The migration rates of different fatty acids were also compared from three different sets of experiments during the lipase-catalyzed reaction. The best-fitting quadratic response surface model was determined by regression and backward elimination. The coefficients of determination (R 2) of the model were 0.996 and 0.981 for Q 2 value. The results show that the fitted quadratic model satisfactorily expresses acyl migration for the enzymatic interesterification in the batch reactor used.  相似文献   

19.
Chemical reactions toward acyl azide activated polyacrylonitrile (PAN) and conditions for membrane surface modifications are described. Ultrafiltration (UF) membranes were prepared from PAN homopolymer and copolymer with methyl acrylate. Besides hydrazide formation and nitrosation, a new method to introduce acyl azide groups into carboxyl modified PAN, using azido transfer with diphenyl phosphoryl azide, was developed. Chemical conversions were characterized, especially with Fourier transform infrared spectroscopy. The heterogeneous modifications are not chemically selective due to side reactions and/or incomplete conversion. The pore structure is altered predominately via modified polymer swelling causing changed UF fluxes and selectivities. However, for the modification via PAN reaction with hydroxyl amine, acid hydrolysis, and azido transfer, the initial membrane separations performance is qualitatively preserved. Using the acyl azide ḿethod, amylo-glucosidase (AG) (EC 3.2.1.3) was immobilized onto the modified PAN UF membranes, enabling hydrolysis of starch or maltose to glucose. Enzyme activity was assayed depending on previous chemical modification (azide content) and immobilization (pH) conditions as well as hydrolysis parameters (substrate, conversion during diffusion or UF). The best results (up to 600 mU/cm2 at 40°C and pH 5.0) were obtained after modification of PAN membranes via carboxyl creation and azido transfer. AG convalently bound to PAN is not influenced much in its catalytic properties (Km = 3.48 and 3.1 mmol/L for free and bound AG, respectively, with maltose at 40°C and pH 5.0). Under UF conditions, AG effective activity can be improved by the convective flow through the membrane. UF selectivity for the polymer starch determines effective substrate concentrations in the membrane, thus affecting observed activities and product purities in the filtrate. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The ethylaluminium dichloride induced Friedel- Crafts acylation of unsaturated fatty compounds such as oleic acid ( 1a ), methyl oleate ( 1b ) and 10-undecenoic acid ( 9b ) and furthermore of 1-octene ( 9a ) with α,β-unsaturated acyl chlorides e.g. crotonic acid chloride ( 2a ) and acrylic acid chloride ( 2b ) gave the corresponding allyl vinyl ketones. Nazarov cyclizations of the acylation products 3a/4a, 3b/4b, 10a and 10b afforded the alkyl substituted 2-cyclopentenones 5a/6a, 5b/6b, 11a/12a and 11b/12b . Catalytic hydrogenation of 5b/6b and 11b/12b gave the respective saturated cyclic products 7b/8b and 13b/14b as diastereomeric mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号