首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniformly porous composites with 3-D network structure (UPC-3D) have been recently developed via a pyrolytic reactive sintering process, which takes advantage of the evolved CO2 gas from a decomposing carbonate source (e.g., dolomite, CaMg(CO3)2) and does not require any additional pore-forming agent nor long-time burning-out process. Through liquid formation via LiF doping, strong necks are formed between constituent particles before completion of the pyrolysis of carbonate, resulting in the formation of a strong 3-D network structure. The pore size distribution is very narrow (with typical pore size: ∼1 μm), and the porosity was controllable (∼30–60%) by changing the sintering temperature. This article presents the development details of UPC-3D, and reports the recent findings in CaZrO3/MgAl2O4 system, which will be one of the more promising systems for practical applications.  相似文献   

2.
Porous CaZrO3/MgAl2O4 composites were synthesized in air by pressureless reactive sintering of an equimolar mixture of dolomite (CaMg(CO3)2), monoclinic zirconia ( m -ZrO2), and α-alumina powders, with a 0.5 wt% lithium fluoride additive. The reaction behavior of the mixed powders (with/without LiF additive) was studied using high-temperature X-ray diffraction. A bulk porous composite resulted from sintering at 1300°C for 2 h (in a nearly closed container, so as to increase the LiF-doping effect), which consisted of fine grains (CaZrO3 and MgAl2O4, ∼0.5–1 μm) and well-grown idiomorphic ones (MgAl2O4 octahedra ∼ 2–4 μm). The idiomorphic spinel grains were located around the inner walls of relatively large pores. The composite showed appreciably high bending strength (σf= 110 ± 8 MPa for a porosity of 31%). The porous CaZrO3/MgAl2O4 composites can be applied as high-temperature filters and lightweight structural components.  相似文献   

3.
Porous Al2O3/20 vol% LaPO4 and Al2O3/20 vol% CePO4 composites with very narrow pore-size distribution at around 200 nm have been successfully synthesized by reactive sintering at 1100°C for 2 h from RE2(CO3)3· x H2O (RE = La or Ce), Al(H2PO4)3 and Al2O3 with LiF additive. Similar to the previously reported UPC-3Ds (uniformly porous composites with a three-dimensional network structure, e.g. CaZrO3/MgO system), decomposed gases in the starting materials formed a homogeneous open porous structure with a porosity of ∼40%. X-ray diffraction, 31P magic-angle spinning nuclear magnetic resonance, scanning electron microscopy, and mercury porosimetry revealed the structure of the porous composites.  相似文献   

4.
Decomposition of the mixed carbonate mineral dolomite, CaMg(CO3)2, and formation of CaO/MgO nanopolycrystals were observed in situ using a field emission scanning electron microscope with a hot stage. The pyrolysis behavior of dolomite was studied with an in situ high–temperature X–ray powder diffraction technique. Nano–sized particles formed during pyrolysis then sintered into CaO/MgO nanopolycrystals. Dense bulk–form CaO/MgO and CaZrO3/MgO nanocomposites were successfully fabricated using reactive hot–pressing from dolomite and dolomite/zirconia mixed powders, respectively.  相似文献   

5.
Composite powders, prepared by coating coarse ZrO2 particles with fine Al2O3 powder using a chemical precipitation technique, were compacted and sintered freely at a constant heating rate of 4°C/min to ∼1600°C. Composites containing up to ∼30 vol% inclusions were sintered to nearly full density under the same conditions used for the unreinforced matrix. Furthermore, the sintering kinetics were not influenced significantly by the inclusion volume fraction. The sinterability of the composites formed from the coated powders was significantly better than that for similar composites formed from mechanically mixed powders. The present data provide a further demonstration that the use of coated powders may have widespread applicability for the fabrication, by free sintering, of dense ceramic particulate composites.  相似文献   

6.
A carbonate precursor of yttrium aluminum garnet (YAG) with an approximate composition of NH4AlY0.6(CO3)1.9(OH)2·0.9H2O was synthesized via a coprecipitation method from a mixed solution of ammonium aluminum sulfate and yttrium nitrate, using ammonium hydrogen carbonate as the precipitant. The precursor precipitate was characterized using chemical analysis, differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. The sinterability of the YAG powders was evaluated by sintering at a constant rate of heating in air and vacuum sintering. The results showed that the precursor completely transforms to YAG at ∼1000°C via the formation of a yttrium aluminate perovskite (YAP) phase. YAG powders obtained by calcining the precursor at temperatures of ≤1200°C were highly sinterable and could be densified to transparency under vacuum at 1700°C in 1 h without additives.  相似文献   

7.
Tetragonal zirconia doped with 3 mol% Er2O3 was prepared by the gel-precipitation wet-chemical method. The compaction response of ultrafine (∼8.5 nm), calcined, deagglomerated powders was studied. Initial sintering was studied using both isothermal and nonisothermal techniques, and an activation energy of 270 ± 40 kJ/mol was obtained; therefore, grain-boundary diffusion was probably the predominant mechanism in the sintering stage. The microstructural development in the high-temperature-aged, sintered samples and its effect on density and mechanical properties were also studied. A theoretically dense body of tetragonal zirconia solid solution of 3 mol% Er2O3–ZrO2, obtained from sintering below 1400°C, was translucent.  相似文献   

8.
Composites of BaFe12O19 particles dispersed throughout a 3-mol%-yttria-doped zirconia (3Y-TZP) matrix have been prepared using the pressureless reactive sintering of 3Y-TZP, BaCO3, and γ-Fe2O3 powders. The reaction behavior of the mixed powder was studied with an in situ , high-temperature powder X-ray diffraction technique. The composite that was sintered at 1300°C consisted of submicrometer-sized 3Y-TZP grains and BaFe12O19 particles; the size of the 3Y-TZP grains was ∼100-300 nm, and the size of the BaFe12O19 particles was ∼200-500 nm. Based on the grain size, most of the BaFe12O19 grains presumably had a single-magnetic-domain structure. The 3Y-TZP/20-wt%-BaFe12O19 composite showed high magnetization and coercivity values, despite the low concentration of ferromagnetic phase. Preliminary mechanical tests revealed that the composite possessed moderately good mechanical properties.  相似文献   

9.
Carbon nanofiber (CNF)-dispersed B4C composites have been synthesized and consolidated directly from mixtures of elemental raw powders by pulsed electric current pressure sintering (1800°C/10 min/30 MPa). A 15 vol% CNF/B4C composite with ∼99% of dense homogeneous microstructures (∼0.40 μm grains) revealed excellent mechanical properties at room temperature and high temperatures: a high bending strength (σb) of ∼710 MPa, a Vickers hardness ( H v) of ∼36 GPa, a fracture toughness ( K I C ) of ∼7.9 MPa m1/2, and high-temperature σb of 590 MPa at 1600°C in N2. Interfaces between the CNF and the B4C matrix were investigated using high-resolution transmission electron microscopy, EDS, and electron energy-loss spectroscopy.  相似文献   

10.
Ultrafine ZrB2–SiC composite powders have been synthesized in situ using carbothermal reduction reactions via the sol–gel method at 1500°C for 1 h. The powders synthesized had a relatively smaller average crystallite size (<200 nm), a larger specific surface area (∼20 m2/g), and a lower oxygen content (∼1.0 wt %). Composites of ZrB2+20 wt% SiC were pressureless sintered to ∼96.6% theoretical density at 2250°C for 2 h under an argon atmosphere using B4C and Mo as sintering aids. Vickers hardness and flexural strength of the sintered ceramic composites were 13.9±0.3 GPa and 294±14 MPa, respectively. The microstructure of the composites revealed that elongated SiC grain dispersed uniformly in the ZrB2 matrix. Oxidation from 1100° to 1600°C for 30 min showed no decrease in strength below 1400°C but considerable decrease in strength with a rapid weight increment was observed above 1500°C. The formation of a protective borosilicate glassy coating appeared at 1400°C and was gradually destroyed in the form of bubble at higher temperatures.  相似文献   

11.
We report here the fabrication of transparent Sc2O3 ceramics via vacuum sintering. The starting Sc2O3 powders are pyrolyzed from a basic sulfate precursor (Sc(OH)2.6(SO4)0.2·H2O) precipitated from scandium sulfate solution with hexamethylenetetramine as the precipitant. Thermal decomposition behavior of the precursor is studied via differential thermal analysis/thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and elemental analysis. Sinterability of the Sc2O3 powders is studied via dilatometry. Microstructure evolution of the ceramic during sintering is investigated via field emission scanning electron microscopy. The best calcination temperature for the precursor is 1100°C, at which the resultant Sc2O3 powder is ultrafine (∼85 nm), well dispersed, and almost free from residual sulfur contamination. With this reactive powder, transparent Sc2O3 ceramics having an average grain size of ∼9 μm and showing a visible wavelength transmittance of ∼60–62% (∼76% of that of Sc2O3 single crystal) have been fabricated via vacuum sintering at a relatively low temperature of 1700°C for 4 h.  相似文献   

12.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

13.
Calcium-deficient hydroxyapatite (CDHA) powders were synthesized by a wet chemical precipitation method using Ca(OH)2 and H3PO4 solutions. Single-phase β-tricalcium phosphate (β-TCP) powder with a molar (Ca+Mg)/P ratio of 1.5 was obtained after calcination of CDHA synthesized under vacuum. During synthesis in air, CO2 can be adsorbed and HBO42− is partly substituted by CO32−, resulting in a lower phosphorous content and consequently an increase of the molar (Ca+Mg)/P ratio to 1.53. A two-phase β-TCP powder containing 20 wt% hydroxyapatite (HA) was obtained after calcination. Samples prepared from β-TCP powders synthesized under vacuum achieved a compressive strength of 301±23 MPa at 99.6% fractional density, while TCP/HA samples prepared in air achieved a maximum compressive strength of 132±29 MPa at 91.7% fractional density. This decrease in strength can be correlated to the porosity retaining due to CO2 release during sintering and residual tensile stresses in the TCP matrix caused by the thermal expansion mismatch of β-TCP and HA.  相似文献   

14.
Ultra-high-temperature ceramic composites of ZrB2 20 wt%SiC were pressureless sintered under an argon atmosphere. The starting ZrB2 powder was synthesized via the sol–gel method with a small crystallite size and a large specific surface area. Dry-pressed compacts using 4 wt% Mo as a sintering aid can be pressureless sintered to ∼97.7% theoretical density at 2250°C for 2 h. Vickers hardness and fracture toughness of the sintered ceramic composites were 14.82±0.25 GPa and 5.39±0.13 MPa·m1/2, respectively. In addition to the good sinterability of the ZrB2 powders, X-ray diffraction and scanning electron microscopy results showed that Mo formed a solid solution with ZrB2, which was believed to be beneficial for the densification process.  相似文献   

15.
Highly textured Bi3NbTiO9 ceramics are fabricated by normal sintering from molten salt-synthesized plate-like crystallites. Fine Bi3NbTiO9 plate-like crystallites (∼1 μm) not only facilitate the densification, but also enhance texture in Bi3NbTiO9 ceramics. Weak-agglomerated platelets exhibit higher sinterability and can be densified at a temperature as low as 1000°C, which is about 100°C lower than that of equiaxed powders prepared by directly calcining Bi3NbTiO9 precursor. Meanwhile, the orientation degree of textured Bi3NbTiO9 ceramics increases with sintering temperature. Highly oriented Bi3NbTiO9 (orientation degree of ∼0.91) ceramic with a relative density of ∼92% is obtained at 1150°C. Because of the oriented grain microstructure, textured Bi3NbTiO9 ceramic exhibits anisotropic electrical properties.  相似文献   

16.
In the present work, we report the processing of ultrahard tungsten carbide (WC) nanocomposites with 6 wt% zirconia additions. The densification is conducted by the spark plasma sintering (SPS) technique in a vacuum. Fully dense materials are obtained after SPS at 1300°C for 5 min. The sinterability and mechanical properties of the WC–6 wt% ZrO2 materials are compared with the conventional WC–6 wt% Co materials. Because of the high heating rate, lower sintering temperature, and short holding time involved in SPS, extremely fine zirconia particles (∼100 nm) and submicrometer WC grains are retained in the WC–ZrO2 nanostructured composites. Independent of the processing route (SPS or pressureless sintering in a vacuum), superior hardness (21–24 GPa) is obtained with the newly developed WC–ZrO2 materials compared with that of the WC–Co materials (15–17 GPa). This extremely high hardness of the novel WC–ZrO2 composites is expected to lead to significantly higher abrasive-wear resistance.  相似文献   

17.
The precursor powders of Ca3Co4O9 were synthesized by a sol–gel method. The results of X-ray diffraction and thermogravimetric and differential thermal analyses patterns indicate that pure Ca3Co4O9 powders could be obtained by calcining the precursor at 800°C for 2 h. High dense Ca3Co4O9 ceramic samples (∼99% of theoretical density) were prepared by the spark plasma sintering (SPS) method. Compared with the conventional sintering (CS), the SPS samples exhibit much higher electrical conductivity and power factor which are respectively about 118 S/cm and 3.51 × 10−4 W·(m·K2)−1. The SPS method is greatly effective for improving the thermoelectric properties of Ca3Co4O9 oxide ceramics.  相似文献   

18.
Six sillenite compounds Bi12MO20-δ (M = Si, Ge, Ti, Pb, Mn, B1/2P1/2) were synthesized, and the resulting single-phase powders were then sintered to obtain ∼97% dense ceramics. An analysis of their microwave dielectric properties, performed at ∼5.5 GHz, revealed a permittivity of ∼40 for all six compounds. The temperature coefficient of resonant frequency was the lowest for the Pb analogue (−84 ppm/K) and was found to increase with increasing ionic radius of the B-site ion to a value of −20 ppm/K for the Bi12SiO20 and Bi12(B1/2P1/2)O20 compounds. The Q × f value is a maximum for Bi12SiO20 and Bi12GeO20 with 8100 and 7800 GHz, respectively. The dielectric properties of the sillenites have been correlated with the structure of the oxygen network of the sillenite crystal lattice. As a result of its low sintering temperature (850°C), chemical compatibility with silver, low dielectric losses, and temperature-stable permittivity, the Bi12SiO20 compound is a suitable material for applications in low-temperature cofiring ceramic (LTCC) technology.  相似文献   

19.
Different Fe-Al2O3 and FeAl-Al2O3 composites with metallic contents up to 30 vol% have been fabricated via reaction processing of Al2O3, Fe, and Al mixtures. Low Al contents (<∼10 vol%) within the starting mixture lead to composites consisting of Fe embedded in an Al2O3 matrix, whereas aluminide-containing Al2O3 composites result from powder mixtures with higher Al contents. In both cases, densification up to 98% TD can be achieved by pressureless sintering in inert atmosphere at moderate temperatures (1450°-1500°C). The proposed reaction sintering mechanism includes the reduction of native oxide layers on the surface of the Fe particles by Al and, in the case of mixtures with high Al contents, aluminide formation followed by sintering of the composites. Density and bending strengths of the reaction-sintered composites depend strongly on the Al content of the starting mixture. In the case of samples containing elemental Fe, crack path observations indicate the potential for an increase of fracture toughness, even at room temperature, by crack bridging of the ductile Fe inclusions.  相似文献   

20.
The sintering kinetics of a pure magnesium aluminate spinel, MgAl2O4, and that doped with LiF were determined through the use of the master sintering curve technique developed by Su and Johnson. 20 Powders with 0%, 0.5%, and 1.0% by mass LiF were densified in a vacuum hot press under a range of unaxial pressures. After the sintering mechanisms in each temperature and pressure regime were determined, an optimized vacuum hot-pressing schedule was formulated for spinel powders doped with 1.0% by mass of LiF. In addition to forming a transient liquid phase, the presence of LiF leads to the formation of oxygen vacancies that promote late-stage sintering in MgAl2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号