首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on the development of wavefront reconstruction and control algorithms for multiconjugate adaptive optics (MCAO) and the results of testing them in the laboratory under conditions that simulate an 8 meter class telescope. The University of California Observatories (UCO) Lick Observatory Laboratory for Adaptive Optics multiconjugate testbed allows us to test wide-field-of-view adaptive optics systems as they might be instantiated in the near future on giant telescopes. In particular, we have been investigating the performance of MCAO using five laser beacons for wavefront sensing and a minimum-variance algorithm for control of two conjugate deformable mirrors. We have demonstrated improved Strehl ratio and enlarged field-of-view performance when compared to conventional AO techniques. We have demonstrated improved MCAO performance with the implementation of a routine that minimizes the generalized isoplanatism when turbulent layers do not correspond to deformable mirror conjugate altitudes. Finally, we have demonstrated suitability of the system for closed loop operation when configured to feed back conditional mean estimates of wavefront residuals rather than the directly measured residuals. This technique has recently been referred to as the "pseudo-open-loop" control law in the literature.  相似文献   

2.
Durham adaptive optics real-time controller   总被引:1,自引:0,他引:1  
Basden A  Geng D  Myers R  Younger E 《Applied optics》2010,49(32):6354-6363
The Durham adaptive optics (AO) real-time controller was initially a proof of concept design for a generic AO control system. It has since been developed into a modern and powerful central-processing-unit-based real-time control system, capable of using hardware acceleration (including field programmable gate arrays and graphical processing units), based primarily around commercial off-the-shelf hardware. It is powerful enough to be used as the real-time controller for all currently planned 8 m class telescope AO systems. Here we give details of this controller and the concepts behind it, and report on performance, including latency and jitter, which is less than 10 μs for small AO systems.  相似文献   

3.
姜文汉 《光电工程》2018,45(3):170489-1-170489-15

自适应光学(AO)是校正动态光学波前误差的技术。本文概述了近50年来AO的发展历程,包括发展初期,“星球大战”期间美国的发展,以及在地基高分辨力成像望远镜,激光系统(特别是惯性约束聚变)以及眼科等方面的应用,此外还给出AO的发展趋势。通过引用每一项技术发展,首创者的首篇文献,给出了比较清晰的发展脉络。

  相似文献   

4.

对太阳大气进行大视场高分辨力光学成像观测是开展太阳物理、空间天气等基础与应用研究的重要前提。对于地基太阳望远镜而言,为了消除地球大气湍流对光学系统的影响,自适应光学是高分辨力成像观测必备的技术手段,与此同时,为了突破大气非等晕性对传统自适应光学校正视场的限制,近年来多层共轭自适应光学技术等大视场自适应光学得到极大发展。本文首先梳理国外太阳自适应光学系统研制情况,重点介绍国内太阳自适应光学技术发展及应用情况,并进一步介绍了后续大视场太阳自适应光学技术发展情况以及目前所取得的成果。

  相似文献   

5.
We quantitatively demonstrate the improvement to adaptively corrected retinal images by using deconvolution to remove the residual wave-front aberrations. Qualitatively, deconvolution improves the contrast of the adaptive optics images. In this work we demonstrate that quantitative information is also increased by investigation of the improvement to cone classification due to the reduction in confusion of adjacent cones because of the extended wings of the point-spread function. The results show that the error in classification between the L and M cones is reduced by a factor of 2, thereby reducing the number of images required by a factor of 4.  相似文献   

6.
Multi-object adaptive optics (MOAO) is a solution developed to perform a correction by adaptive optics (AO) in a science large field of view. As in many wide-field AO schemes, a tomographic reconstruction of the turbulence volume is required in order to compute the MOAO corrections to be applied in the dedicated directions of the observed very faint targets. The specificity of MOAO is the open-loop control of the deformable mirrors by a number of wavefront sensors (WFSs) that are coupled to bright guide stars in different directions. MOAO calls for new procedures both for the cross registration of all the channels and for the computation of the tomographic reconstructor. We propose a new approach, called "Learn and Apply (L&A)", that allows us to retrieve the tomographic reconstructor using the on-sky wavefront measurements from an MOAO instrument. This method is also used to calibrate the registrations between the off-axis wavefront sensors and the deformable mirrors placed in the science optical paths. We propose a procedure linking the WFSs in the different directions and measuring directly on-sky the required covariance matrices needed for the reconstructor. We present the theoretical expressions of the turbulence spatial covariance of wavefront slopes allowing one to derive any turbulent covariance matrix between two wavefront sensors. Finally, we discuss the convergence issue on the measured covariance matrices, we propose the fitting of the data based on the theoretical slope covariance using a reduced number of turbulence parameters, and we present the computation of a fully modeled reconstructor.  相似文献   

7.
A Kellerer 《Applied optics》2012,51(23):5743-5751
First multiconjugate adaptive-optical (MCAO) systems are currently being installed on solar telescopes. The aim of these systems is to increase the corrected field of view with respect to conventional adaptive optics. However, this first generation is based on a star-oriented approach, and it is then difficult to increase the size of the field of view beyond 60-80?arc sec in diameter. We propose to implement the layer-oriented approach in solar MCAO systems by use of wide-field Shack-Hartmann wavefront sensors conjugated to the strongest turbulent layers. The wavefront distortions are averaged over a wide field: the signal from distant turbulence is attenuated and the tomographic reconstruction is thus done optically. The system consists of independent correction loops, which only need to account for local turbulence: the subapertures can be enlarged and the correction frequency reduced. Most importantly, a star-oriented MCAO system becomes more complex with increasing field size, while the layer-oriented approach benefits from larger fields and will therefore be an attractive solution for the future generation of solar MCAO systems.  相似文献   

8.
The objective of an astronomical adaptive optics control system is to minimize the residual wave-front error remaining on the science-object wave fronts after being compensated for atmospheric turbulence and telescope aberrations. Minimizing the mean square wave-front residual maximizes the Strehl ratio and the encircled energy in pointlike images and maximizes the contrast and resolution of extended images. We prove the separation principle of optimal control for application to adaptive optics so as to minimize the mean square wave-front residual. This shows that the residual wave-front error attributable to the control system can be decomposed into three independent terms that can be treated separately in design. The first term depends on the geometry of the wave-front sensor(s), the second term depends on the geometry of the deformable mirror(s), and the third term is a stochastic term that depends on the signal-to-noise ratio. The geometric view comes from understanding that the underlying quantity of interest, the wave-front phase surface, is really an infinite-dimensional vector within a Hilbert space and that this vector space is projected into subspaces we can control and measure by the deformable mirrors and wave-front sensors, respectively. When the control and estimation algorithms are optimal, the residual wave front is in a subspace that is the union of subspaces orthogonal to both of these projections. The method is general in that it applies both to conventional (on-axis, ground-layer conjugate) adaptive optics architectures and to more complicated multi-guide-star- and multiconjugate-layer architectures envisaged for future giant telescopes. We illustrate the approach by using a simple example that has been worked out previously [J. Opt. Soc. Am. A 73, 1171 (1983)] for a single-conjugate, static atmosphere case and follow up with a discussion of how it is extendable to general adaptive optics architectures.  相似文献   

9.
A modified method for maximum-likelihood deconvolution of astronomical adaptive optics images is presented. By parametrizing the anisoplanatic character of the point-spread function (PSF), a simultaneous optimization of the spatially variant PSF and the deconvolved image can be performed. In the ideal case of perfect information, it is shown that the algorithm is able to perfectly cancel the adverse effects of anisoplanatism down to the level of numerical precision. Exploring two different modes of deconvolution (using object bases of pixel values or stellar field parameters), we then quantify the performance of the algorithm in the presence of Poissonian noise for crowded and noncrowded stellar fields.  相似文献   

10.
Future extreme adaptive optics (ExAO) systems have been suggested with up to 10(5) sensors and actuators. We analyze the computational speed of iterative reconstruction algorithms for such large systems. We compare a total of 15 different scalable methods, including multigrid, preconditioned conjugate-gradient, and several new variants of these. Simulations on a 128x128 square sensor/actuator geometry using Taylor frozen-flow dynamics are carried out using both open-loop and closed-loop measurements, and algorithms are compared on a basis of the mean squared error and floating-point multiplications required. We also investigate the use of warm starting, where the most recent estimate is used to initialize the iterative scheme. In open-loop estimation or pseudo-open-loop control, warm starting provides a significant computational speedup; almost every algorithm tested converges in one iteration. In a standard closed-loop implementation, using a single iteration per time step, most algorithms give the minimum error even in cold start, and every algorithm gives the minimum error if warm started. The best algorithm is therefore the one with the smallest computational cost per iteration, not necessarily the one with the best quasi-static performance.  相似文献   

11.
The standard adaptive optics system can be viewed as a sampled-data feedback system with a continuous-time disturbance (the incident wavefront from the observed object) and discrete-time measurement noise. A common measure of the performance of adaptive optics systems is the time average of the pupil variance of the residual wavefront. This performance can be related to that of a discrete-time system obtained by lifting the incident and residual wavefronts. The corresponding discrete-time model is derived, and the computation of the adaptive optics system residual variance is based on that model. The predicted variance of a single mode of an adaptive optics system is shown to be the same as that obtained via simulation (as expected). The discrete-time prediction is also shown to be superior to a continuous-time approximation of the adaptive optics system.  相似文献   

12.
Real-time modal control implementation for adaptive optics   总被引:2,自引:0,他引:2  
The electronics, computing hardware, and computing used to provide real-time modal control for a laser guide-star adaptive optics system are presented. This approach offers advantages in the control of unobserved modes, the elimination of unwanted modes (e.g., tip and tilt), and automatic handling of the case of low-resolution lens arrays. In our two-step modal implementation, the input vector of gradients is first decomposed into a Zernike polynomial mode by a least-squares estimate. The number of modes is assumed to be less than or equal to the number of actuators. The mode coefficients are then available for collection and analysis or for the application of modal weights. Thus the modal weights may be changed quickly without recalculating the full matrix. The control-loop integrators are at this point in the algorithm. To calculate the deformable-mirror drive signals, the mode coefficients are converted to the zonal signals by a matrix multiply. When the number of gradients measured is less than the number of actuators, the integration in the control loop will be done on the lower-resolution grid to avoid growth of unobserved modes. These low-resolution data will then be effectively interpolated to yield the deformable-mirror drive signals.  相似文献   

13.
The concept of adaptive optics for improving the cost-performance of free-space optoelectronic interconnects is discussed. Adaptive optics as a design option for optical interconnect systems is presented and discussed. A practical demonstrator that performs low-order correction was built and tested. Slowly varying misalignments, including thermal effects, were compensated for in a 622-Mbit/s free-space optical data link.  相似文献   

14.
This paper presents results from an adaptive optics experiment in which an adaptive control loop augments a classical adaptive optics feedback loop. Closed-loop wavefront errors measured by a self-referencing interferometer are fed back to the control loops, which drive a membrane deformable mirror to correct the wavefront. The paper introduces new frequency-weighted deformable mirror modes used as the control channels and new wavefront sensor modes for analyzing the performance of the control loops. The corrected laser beam also is imaged by a diagnostic target camera. The experimental results show reduced closed-loop wavefront errors and correspondingly sharper diagnostic target images produced by the adaptive control loop as compared with the classical AO loop.  相似文献   

15.
Turbulence correction in a large field of view by use of an adaptive optics imaging system with several deformable mirrors (DM's) conjugated to various heights is considered. The residual phase variance is computed for an optimized linear algorithm in which a correction of each turbulent layer is achieved by applying a combination of suitably smoothed and scaled input phase screens to all DM's. Finite turbulence outer scale and finite spatial resolution of the DM's are taken into account. A general expression for the isoplanatic angle thetaM of a system with M mirrors is derived in the limiting case of infinitely large apertures and Kolmogorov turbulence. Like Fried's isoplanatic angle theta0,thetaM is a function only of the turbulence vertical profile, is scalable with wavelength, and is independent of the telescope diameter. Use of angle thetaM permits the gain in the field of view due to the increased number of DM's to be quantified and their optimal conjugate heights to be found. Calculations with real turbulence profiles show that with three DM's a gain of 7-10x is possible, giving the typical and best isoplanatic field-of-view radii of 16 and 30 arcseconds, respectively, at lambda = 0.5 microm. It is shown that in the actual systems the isoplanatic field will be somewhat larger than thetaM owing to the combined effects of finite aperture diameter, finite outer scale, and optimized wave-front spatial filtering. However, this additional gain is not dramatic; it is less than 1.5x for large-aperture telescopes.  相似文献   

16.
Atmospheric turbulence corrupts astronomical images formed by ground-based telescopes. Adaptive optics systems allow the effects of turbulence-induced aberrations to be reduced for a narrow field of view corresponding approximately to the isoplanatic angle theta(0). For field angles larger than theta(0), the point spread function (PSF) gradually degrades as the field angle increases. We present a technique to estimate the PSF of an adaptive optics telescope as function of the field angle, and use this information in a space-varying image reconstruction technique. Simulated anisoplanatic intensity images of a star field are reconstructed by means of a block-processing method using the predicted local PSF. Two methods for image recovery are used: matrix inversion with Tikhonov regularization, and the Lucy-Richardson algorithm. Image reconstruction results obtained using the space-varying predicted PSF are compared to space invariant deconvolution results obtained using the on-axis PSF. The anisoplanatic reconstruction technique using the predicted PSF provides a significant improvement of the mean squared error between the reconstructed image and the object compared to the deconvolution performed using the on-axis PSF.  相似文献   

17.
Fernández EJ  Artal P 《Applied optics》2007,46(28):6971-6977
An artificial dynamic eye model is proposed. The prototype enabled us to introduce temporal variations in defocus and spherical aberration, resembling those typically found in the human eye. The eye model consisted of a meniscus lens together with a modal liquid crystal lens with controllable focus. A diffuser placed at a fixed distance from the lenses acted as the artificial retina. Developed software allowed the user to precisely control the dynamic generation of aberrations. In addition, different refractive errors could simultaneously be emulated by varying the distance between the components of the model. The artificial eye was first used as a dynamic generator of both spherical aberration and defocus, imitating the behavior of a real eye. The artificial eye was implemented in an adaptive optics system designed for the human eye. The system incorporated an electrostatic deformable mirror and a Hartmann-Shack wavefront sensor. Results with and without real time closed-loop aberration correction were obtained. The use of the dynamic artificial eye could be quite useful for testing and evaluating adaptive optics instruments for ophthalmic applications.  相似文献   

18.
We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.  相似文献   

19.
Hu S  Xu B  Zhang X  Hou J  Wu J  Jiang W 《Applied optics》2006,45(12):2638-2642
Two kinds of algorithm for an adaptive optics (AO) system that uses two deformable mirrors (DMs), one with large stroke and the other with high spatial frequency, to correct different aberrations are described. The algorithms are based on modal method and direction-gradient method, respectively. Numerical simulations for the algorithms have been made. The simulation results indicate that the two DMs in the AO system can correct different aberrations with different characteristics, and the closed-loop performance of a double-DM AO system will be almost the same as that of an AO system that uses a single DM with an ideal stroke.  相似文献   

20.
The adaptive optics minimum variance control problem is formulated as a linear-quadratic-Gaussian optimization. The formulation incorporates the wavefront sensor frame integration in discrete-time models of the deformable mirror and incident wavefront. It shows that, under nearly ideal conditions, the resulting minimum variance controller approaches the integral controller commonly used in adaptive optics systems. The inputs to the controller dynamics are obtained from a reconstructor with the maximum a posteriori structure that uses the estimation error covariance of the wavefront error. The ideal conditions assumed to obtain the integral controller are as follows; isotropic first-order (but nonstationary) temporal atmospheric aberrations, no computational loop delay, and no deformable mirror dynamics. The effects of variations in these conditions are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号