首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A multilevel grating coupler based on silicon-on-insulator (SOI) material structure is proposed to realize the coupling between waveguide and waveguide or waveguide and fiber. This coupler is compatible with the current fabrication facilities for complementary metal oxide semiconductor (CMOS) technology with vertical coupling. This structure can realize coupling when the beams with transverse electric (TE) polarization and transverse magnetic (TM) polarization are incident at the same time. The influences of the grating coupler parameters including wavelength, the thickness of waveguide layer, the thickness of SiO2 layer and the number of steps on the TE mode and TM mode coupling efficiencies are discussed. Theory researches and simulation results indicate that the wavelength range is from 1533 nm to 1580 nm when the TE mode and TM mode coupling efficiencies are both more than 40% as the grating period is 0.99 μm. The coupling efficiencies of the incident TE and TM modes are 49.9% and 49.5% at the wavelength of 1565 nm, respectively, and the difference between them is only 0.4%.  相似文献   

2.
A broad-area laser diode combined with a planar external waveguide cavity operates in the fundamental mode and reshapes the output emission into a circular 15/spl deg/ beam. A 500 /spl mu/m-long by 40 /spl mu/m-wide laser diode with uncoated facets coupled with the uncoated ModeReShaper (MRS) planar chip has a coupling efficiency of /spl sim/40% and stabilised the fundamental mode at drive currents up to three-times threshold.  相似文献   

3.
We report the first experimental demonstration of a novel single-layer subwavelength grating (SWG) that has >500-nm-wide reflection spectrum from 1.12-1.62 /spl mu/m and very high reflectivity (>98.5%). This SWG is scalable for different wavelengths by simply changing the grating dimensions, which, thus, facilitates monolithic integration of devices over a wide range of wavelengths.  相似文献   

4.
In this work, the light coupling efficiency of organic light-emitting diode (OLED) and polymer optical waveguide integrated device was improved by the grating coupler. To maximize light coupling efficiency, the grating coupler was optimized by finite-difference time-domain (FDTD) method. Based on the simulation results, the grating coupler was fabricated via laser interference lithography process and an OLED was integrated on the surface of it. Comparing the integrated devices without and with grating coupler, light coupling efficiency of the grating-based integrated device was improved by about 5%. The proposed integrated device has the potential application for low-cost and flexible monolithic optical sensors.  相似文献   

5.
Grating coupling between vertically integrated waveguides via supermode was discussed and demonstrated. Two thin-film waveguides with grating couplers were stacked on a substrate. A guided wave in one waveguide is converted by a grating coupler to a supermode propagating contradirectionally, and then converted by another grating coupler to a guided wave in the other waveguide. The coupling shows high wavelength selectivity, and the wavelength-division add/drop multiplexing function can be combined. A demonstrator was designed and fabricated. Theoretically predicted coupling efficiency was almost 100% with wavelength selectivity of 2 nm, while the experimentally obtained value was 40% in the efficiency and 1 nm in the selectivity  相似文献   

6.
Optical directional coupling by means of a periodic perturbation is described between a clad, single mode, cylindrical fiber, and a thin-film planar waveguide. Codirectional coupling was achieved to a clad fiber, with 0.4 percent efficiency; allowing for the geometric mismatch, this is effectively 30 percent coupling. The fiber guided mode is accessed by reducing the fiber diameter by heating and pulling. Mode phase matching is achieved with a periodic grating sputter etched into the film. Unwanted grating induced interactions are minimized by restricting the guide parameters or by modifying the coupling mechanism. A perturbation analysis is used to calculate coupling coefficients and the design procedure for an optimum structure is explained. Measurements on grating couplers are described and the film/fiber codirectional coupling is shown to be effected by the grating.  相似文献   

7.
We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75% coupling efficiency (CE) between single-mode fiber and silicon-on-insulator (SOI) waveguide through 2D finite-different time-domain (FDTD) simulation. The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay. The structure, including grating couplers, adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography (ICP) step, which is CMOS-compatible. A relatively high coupling efficiency of 47.2% was obtained at a wavelength of 1562 nm.  相似文献   

8.
We apply chirping of the waveguide grating router to the multifrequency laser (MFL). We present a 10/spl times/100 GHz chirped MFL that has precise absolute oscillation wavelength control and guaranteed single router free-spectral-range mode oscillation for all 10 channels and, additionally, guaranteed single cavity mode oscillation for 4 of the channels.  相似文献   

9.
Successful athermalisation of a silica arrayed waveguide grating (AWG) multiplexer using compensating longitudinal strain is reported. Peak wavelength shift of <0.04 nm is recorded over 5-70/spl deg/C in a 40/spl times/100 GHz device, representing a 95% reduction on standard silica AWGs, without introduction of birefringence or compromise of optical crosstalk.  相似文献   

10.
The reflective self-organized lightwave network (R-SOLNET) enables the formation of self-aligned waveguides in the photorefractive (PR) material between misaligned optical devices by introducing a write beam. The incident write beam from one device and the reflected write beam from the second device induce self-focusing in the PR material and construct a coupling waveguide. A wavelength filter on the waveguide edge is used to facilitate the reflected beam. The beam propagation method reveals that R-SOLNET exhibits higher coupling efficiencies and better tolerances than the one-beam-writing SOLNET and the free-space coupling. The apparent usefulness of R-SOLNET is remarkable for gaps wider than 100 /spl mu/m in 8-/spl mu/m-wide waveguide circuits. For 240-/spl mu/m gap, coupling efficiency better than 50% can be achieved even when the lateral misalignment is as large as 4 /spl mu/m. The results indicate that R-SOLNET may be useful for vertical waveguide constructions of optical z-connections in three-dimensional intrachip optical interconnects and switching systems, as well as for self-aligned optical couplings with devices that cannot emit write beams such as vertical-cavity surface-emitting lasers, photodetectors, and electrooptic switches.  相似文献   

11.
对硅(Si)基波导光栅耦合器的设计与耦合性能进 行了研究。采用本征模展开法对光栅耦合器进行设计与 优化,通过实验测量了光栅的耦合性能,并对均匀光栅、自聚焦光栅和反射光栅等3种光栅 耦合器的耦合 性能进行了比较,耦合效率分别达到了达到47.86、56. 36和48.98%,自聚焦光栅可以有效改善光纤到 光纤的传输效果,耦合效率提高了8.5%。通过实验测量了基于耦合光 栅技术的Si基条形波导和槽型波导的 传输损耗,结果显示,条形波导和槽型波导的传输损耗分别为2.34d B/cm和6.31dB/mm。  相似文献   

12.
A high-efficiency focusing waveguide grating coupler (FWGC) using parallelogramic group profiles is proposed, designed and fabricated. A new waveguide grating structure has been employed which consists of bilayered grating with one grating etched into the guiding layer and the other into a high-index cladding layer. Computer simulation shows that both high directionality and large radiation decay factor are obtainable with this structure. Fabrication of this FWGC by electron beam lithography is described. A coupling efficiency of 86% and focusing spot size full-width at half maximum (FWHM) of around 10 μm have been achieved  相似文献   

13.
In this letter, we proposed an alternate method by using the Fe-doped InGaAsP-InP hybrid grating layers to fabricate the 1.3-/spl mu/m current-blocking-grating complex-coupled distributed-feedback (CBG CC-DFB) laser diodes (LDs) grown by metal-organic chemical vapor deposition (MOCVD). By combining the Fe-doped InGaAsP-InP grating layers, the CBG CC-DFB LDs can provide high optical DFB coupling coefficient and high current confining ability. Moreover, the current aperture in the lateral direction can be easily controlled by the self-aligned MOCVD regrowth process. Therefore, the manufacture of CBG CC-DFB buried heterostructure LDs is easy as the ridge-waveguide LDs. The LDs exhibit a low threshold current of 5.3 mA, a high slope efficiency of 0.42 mW/mA, and a stable single mode with a high sidemode suppression ratio of /spl sim/42 dB at two times the threshold (10.5 mA). Even at high temperatures, these LDs still have an extremely low threshold current of 15.8 mA at 90/spl deg/ and a small variation in slope efficient of only -1 dB at the temperatures between 20/spl deg/ and 80/spl deg/. Furthermore, these LDs show a high-speed characteristic of more than 11.8 GHz at 20/spl deg/, which are suitable for 10-Gb/s Ethernet and OC-192 applications.  相似文献   

14.
We demonstrate 850-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a locally etched subwavelength surface grating that are single-mode and polarization stable from threshold up to thermal roll-over, reaching /spl sim/4 mW of output power. The side-mode suppression ratio (SMSR) is >30 dB and the orthogonal polarization suppression ratio (OPSR) is /spl sim/20 dB. Moreover, no distortion of the far-field beam profile is observed as a result of the surface grating. Our numerical calculations show that a carefully designed VCSEL can have a high simultaneous mode and polarization selectivity without a significant increase in loss for the favored fundamental mode with polarization state perpendicular to the grating lines. This indicates characteristics such as threshold current and resonance frequency will not be notably degraded. The calculations also show a low sensitivity to variations in grating etch depth and duty cycle, which relaxes fabrication tolerances. In our experimental parametric study, where the oxide aperture diameter, surface grating diameter, and grating duty cycle were varied, the combined mode and polarization selection was investigated. For an optimum combination of oxide aperture and surface grating diameters of 4.5 and 2.5 /spl mu/m, respectively, the device is found to be single-mode and polarization stable for a broad range of grating duty cycles, from 55% to 75%, with only a small variation in other laser performances, which is in line with theory.  相似文献   

15.
The evanescent coupling from a photonic crystal resonator to a micron-thick optical fiber is investigated in detail by using a three-dimensional finite-difference time-domain (3D-FDTD) method. Properly designed photonic crystal cavity and taper structures are proposed, and optimal operating conditions are found to enhance the coupling strength while suppressing other cavity losses including the coupling to the slab propagating mode and to the higher-order fiber mode. In simulation, the coupling into the fundamental fiber mode is discriminated from other cavity losses by spatial and parity filtering of the FDTD results. The coupling efficiency of more than 80% into the fundamental fiber mode together with a total Q factor of 5200 is achieved for the fiber diameter of 1.0 /spl mu/m and the air gap of 200 nm between the fiber and the cavity.  相似文献   

16.
吴少强  冯向华  卫正统  吴天昊 《红外与激光工程》2019,48(4):422001-0422001(6)
为了实现横截面尺寸为50 m50 m的聚硅氧烷聚合物光波导的耦合转向问题,设计了一种表面覆盖高折射率包层的多层蚀刻光栅耦合器。首先,分析了影响聚合物波导光栅耦合器耦合效率的结构因素;然后,采用在光栅表面蚀刻高折射率层的方法,提高了聚合物波导光栅耦合器的耦合效率;接着,对不同的周期(范围:100~4 000 nm)和不同的蚀刻深度(范围:0~50 000 nm)进行排列组合,形成不同的光栅结构,基于时域有限差分法编写程序,遍历所有情况,得到不同光栅结构下的光场情况以及其耦合效率,找到使耦合效率最大的周期以及蚀刻深度。最后,设计了多层蚀刻的光栅耦合器,进一步提高耦合效率。当蚀刻深度为5 000 nm,光栅周期为2 600 nm时,带高折射率层的聚硅氧烷聚合物光波导均匀光栅耦合器的耦合效率达到最大,为17.2%。采用多层蚀刻的方式,对结构进行优化,其耦合效率能达到37.4%。为聚硅氧烷聚合物光波导在光互连中的实际应用提供了理论依据。  相似文献   

17.
We describe a highly efficient coupling of up to 78% into a single mode fiber (SMF) by utilizing a low-divergence-angle InGaAs-AlGaAs laser and a new high-NA aspheric lens, resulting in the coupled optical output of over 300 mW with a kink-free performance. The kink-free 300 mW of fiber-coupled power is the largest power reported from a diode laser wavelength stabilized using a fiber Bragg grating. A 3% fiber Bragg grating makes the optical output stabilize at a wavelength of 1.016 /spl mu/m for an optical output power up to 310 mW and without any distinct decrease of the optical output. The coupling tolerance for lateral offsets is improved by utilizing a thermal-diffused expanded-core technique even in the case of using a high-NA coupling aspheric lens. We have also achieved a 300-mW fiber-coupled wavelength-stabilized InGaAs-AlGaAs semiconductor laser butterfly module using a fiber Bragg grating.  相似文献   

18.
We propose a new multiple quasi-phase-matched wavelength converter based on the continuous phase modulation of a /spl chi//sup (2)/ grating for use in variable wavelength conversion. A numerical study shows that the proposed device exhibits a high conversion efficiency, flexible design, and robust fabrication tolerance. A waveguide device fabricated by annealed proton exchange agrees well with the numerical design. Fine-tuning the device enabled us to demonstrate variable wavelength conversion between signals on the standard optical frequency grid. Using the device, we also demonstrated fast (<100 ps) wavelength switching of 4-channel 40-Gb/s signals. The obtained results clearly show that the proposed multiple quasi-phase-matched devices will be useful when constructing future flexible photonic networks.  相似文献   

19.
We demonstrate a two-step laterally tapered 1.55-/spl mu/m spot size converter distributed feedback laser diode (SSC DFB LD) having a planar buried heterostructure-type active waveguide and a ridge-type passive waveguide fabricated by using a nonselective grating process. Unlike conventional SSC DFB LDs, where a selective grating is employed, this SSC DFB LD employed a nonselective grating over the entire device region in order to make its fabrication much simpler than that of the conventional SSC DFB LDs. The two-step laterally tapered SSC is effective in removing an unwanted wavelength peak originating from the SSC section having a multiquantum well and a grating under it. The fabricated SSC DFB LD operates at 1.553-/spl mu/m wavelength and shows a far field pattern in horizontal and vertical directions of 13.4/spl deg/ and 19.5/spl deg/, respectively.  相似文献   

20.
A technique for interrogating multiplexed fibre Bragg grating (FBG) sensors using an arrayed waveguide grating (AWG) is described. The approach considerably extends the sensing range from that achieved previously, while providing a strain resolution of 17n/spl epsiv///spl radic/Hz at 30 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号