首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High cycle fatigue fracture surfaces of specimens in which failure was initiated at a subsurface inclusion were investigated by atomic force microscopy and by scanning electron microscopy. The surface roughness R a increased with radial distance from the fracture origin (inclusion) under constant amplitude tension–compression fatigue, and the approximate relationship: R a ≅ C Δ K 2I holds. At the border of a fish-eye there is a stretched zone. Dimple patterns and intergranular fracture morphologies are present outside the border of the fish-eye. The height of the stretch zone is approximately a constant value around the periphery of the fish-eye. If we assume that a fatigue crack grows cycle-by-cycle from the edge of the optically dark area (ODA) outside the inclusion at the fracture origin to the border of the fish-eye, we can correlate the crack growth rate d a/ d N , stress intensity factor range Δ K I and R a for SCM435 steel by the equation
   
and by d a/ d N proportional to the parameter R a .
Integrating the crack growth rate equation, the crack propagation period N p2 consumed from the edge of the ODA to the border of the fish-eye can be estimated for the specimens which failed at N f > 107. Values of N p2 were estimated to be ∼1.0 × 106 for the specimens which failed at N f ≅ 5 × 108. It follows that the fatigue life in the regime of N f >107 is mostly spent in crack initiation and discrete crack growth inside the ODA.  相似文献   

2.
Gigacycle fatigue properties of 1800 MPa class spring steels   总被引:2,自引:0,他引:2  
Fatigue tests up to 108 cycles were carried out for two spring steels (Heats A and D1) and one valve spring steel (Heat F) with tensile strength, σ B, of 1720, 1725 and 1764 MPa, respectively. The size and composition of inclusions in Heats Dl and F were controlled. The surface‐type fracture occurred at shorter lives below 106 cycles, while the fish‐eye‐type fracture occurred at longer lives. The fatigue limit, σ W, at 108 cycles was 640 MPa for Heats A and D1 and 700 MPa for Heat F. Al2O3 inclusions for Heat A and both TiN inclusions and matrix cracks, i.e. internal facets, for Heat F were observed at the fish‐eye‐type fracture sites, while only matrix cracks were observed for Heat Dl. ODA, i.e. optically dark area, which is considered to be related to hydrogen effects, were formed around Al2O3 and TiN inclusions. Fatigue tests were also conducted after specimens were heated up to 573 K in high vacuum of 2 × 10–6 Pa. The heat treatment eliminated matrix cracks for Heat D1 and the fatigue limit at 108 cycles recovered to the estimated value of 920 MPa from the equation σ w= 0.53 σ B for the surface fracture. These results suggest that inclusions control and hydrogen influence the gigacycle fatigue properties for these high strength steels. In addition, it is expected that the creation of a martensite structure with a high resistance to hydrogen effects in the inclusion‐controlled steel could achieve the higher fatigue limit estimated for the surface‐type fracture.  相似文献   

3.
In this study, the carbide-free bainite/martensite (CFB/M) steel was micro-alloyed with Nb (CFB/M-Nb). The very high cycle fatigue (VHCF) behaviors of this CFB/M-Nb steel were investigated by ultrasonic fatigue test. Especially, different microstructures of the CFB/M-Nb steel were deliberately designed to disclose the VHCF failure mechanism. In addition, the effect of hydrogen in the formation of the optical dark area (ODA) was analyzed, which was thought to control the formation of ODA by concentrating around interior inclusions. Results show the hydrogen cannot be considered to dominate the formation of ODA. Mostly important, “soft or coarsely soft structure induced fatigue crack” should be responsible for the primary VHCF failure mechanism of CFB/M-Nb steel.  相似文献   

4.
Abstract

The fatigue lifetimes of hourglass shaped specimens of a hardened spring steel were studied. The failure probability was determined experimentally at one loading level and causes of fatigue failure were identified on fracture surfaces. The depth profile of residual stresses after fatigue testing was determined using X-ray techniques. Cyclic flow data, long crack growth data, and the threshold for crack propagation were determined. Inclusion size distributions of the steel were obtained using different techniques. A model for the probability of fatigue failure of the hourglass specimens was formulated. Microcracks are assumed to exist at all inclusions and specimen failure is controlled by those cracks which can propagate to failure. Two different models based on linear fracture mechanics were used to determine critical inclusion sizes for crack propagation. The models take into account all the above independent experimental data, i.e. residual stresses, cyclic flow data, threshold for crack propagation, inclusion distribution, etc. Experimental failure probabilities were satisfactorily reproduced by the model.

MST/1648  相似文献   

5.
Bearing steels and other high strength steels exhibit complex fatigue behavior in excess of 107 cycles due to their sensitivity to defects like inclusions. Failure occurring in the very high cycle fatigue regime and the lack of an asymptote in the measured S–N data raise the questions as to the existence of fatigue limit and prediction of the fatigue strength of the high strength steel components. A series of two papers are written to discuss on the characteristics of the very high cycle fatigue and their implication for engineering applications. In the present paper (Part I) a deterministic defect model is developed to describe the fatigue crack growth from de-bonded hard inclusions. The model is shown to provide a unified prediction of fatigue behavior in different regimes, i.e. low cycle fatigue regime dictated by the tensile strength, high cycle fatigue regime obeying Basquin’s law and the very high cycle fatigue regime featured by the fish-eye and ODA (optically dark area) surrounding an interior fatigue-initiating inclusion on the fracture surface. The model predictions agree well with experiments. A combination of the deterministic model with a stochastic model that describes the inclusion size distribution allows prediction of fatigue strength and fatigue limit associated with certain reliability of a steel component. It is found that very high cycle fatigue, associated with interior inclusions, is attributed to the very slow crack propagation in vacuum condition, and that an asymptote for fatigue limit observed for mild steels also exists for high strength steels such as bearing steels, but extends beyond the very high cycle fatigue regime normally measured to-date. Monte Carlo simulation shows that such a fatigue limit asymptote becomes clearly visible in excess of 1012 cycles, which is difficult to measure with today’s testing devices. Furthermore, the effects of steel cleanliness and specimen type and shape are studied by means of Monte Carlo simulations.  相似文献   

6.
铁素体-珠光体型非调质钢的高周疲劳破坏行为   总被引:1,自引:0,他引:1  
研究了三种碳和钒含量不同的铁素体-珠光型非调质钢的高周疲劳破坏行为,并与调质钢进行了对比.结果表明,铁素体-珠光体型非调质钢的高周疲劳性能与其微观组织特征有关.提高铁素体相硬度,其疲劳极限及疲劳极限比均提高,疲劳极限比最高可达0.60,远高于调质钢的0.50;热轧态粗大的网状铁素体-珠光体组织的疲劳性能较差,低于同等强度水平的高温回火马氏体组织。铁素体-珠光体型非调质钢疲劳破坏机制不同于调质钢,其疲劳裂纹基本上萌生于试样表面的铁素体/珠光体边界,并优先沿着铁素体/珠光体边界扩展;对于同等强度水平的调质钢,不存在像铁素体那样的软相,因而易在试样表层粗大的夹杂物处萌生疲劳裂纹.  相似文献   

7.
Initiation of quasicleavage (QC) cracks in delayed fracture of hydrogen charged, quenched and tempered AISI 4340 steel was studied by means of a fractographic technique. The fatal crack leading to the delayed fracture of an unnotched specimen is found not to be caused by intergranular cracking as is commonly found in notched specimens, but by QC cracking. An SEM fractographic examination has revealed that QC cracks, which initiate around non-metallic inclusions and under the effect of hydrogen alone, grow mainly along the rolling direction of the specimen. Furthermore, the tensile component of stress causes a QC crack to grow in the plane of maximum tensile stress. The condition under which brittle fracture finally occurs in delayed fracture can be evaluated by the classical Griffith criterion from two parameters: the QC crack length and the nominal applied stress.

MST/3264  相似文献   

8.
Experiments to investigate the effect of hydrogen pressure and test frequency on the fatigue crack growth properties of a Ni–Cr–Mo steel for the storage cylinder of a 70 MPa hydrogen storage station were conducted. Compact tension specimens were cut out from the storage cylinder. The crack growth properties obtained in hydrogen gas were compared with those obtained in air. Higher hydrogen pressures and lower loading frequencies lead to faster crack growth. However, there is an upper limit to the acceleration of the fatigue crack growth rate in hydrogen gas, which can be used for the design of the hydrogen cylinder. The effect of long and large inclusions present in the steel was also verified. The observations carried out on specimen fracture surfaces showed that the low population of inclusions did not influence the fatigue crack growth rate.  相似文献   

9.
Very high cycle fatigue (VHCF) properties were compared between two types of specimens: enlarged specimens and our standard specimens. Fatigue tests were conducted by ultrasonic fatigue testing; the material used was commercial spring steel. All tests ended in internal fracture, with large-size effects observed, i.e., the enlarged specimens showed lower VHCF strength than the standard specimens. Most of the internal fracture origins were oxide-type inclusions that were larger in the enlarged specimens than in the standard specimens, indicating the size effect to be caused by the difference in oxide-type inclusion sizes at the origins of internal fractures. The large-size effect strongly urges the use of large specimens when conducting VHCF tests on high-strength steel. Moreover, the large-size effect implies that fatigue strength cannot in this case be determined using the conventional S-N curve approach, since the S-N curve depends on the specimen size. The evaluation of the VHCF strength thus needs two steps: an estimation of the maximal inclusion size, followed by an estimation of the VHCF strength based on the maximal inclusion size.  相似文献   

10.
The S – N curve obtained from cantilever-type rotary bending fatigue tests using hour-glass-shaped specimens of high carbon-chromium bearing steel clearly distinguished the fracture modes into two groups each having a different crack origin. One was governed by crystal slip on the specimen surface, which occurred in the region of short fatigue life and a high stress amplitude level. The other was governed by a non-metallic inclusion at a subsurface level which occurred in the region of long fatigue life and low stress amplitude. The inclusion developed a fish-eye fracture mode that was distributed over a wide range of stress amplitude not only below the fatigue limit defined as the threshold for fracture due to the surface slip mode but also above the fatigue limit. This remarkable shape of the S – N curve was different from the step-wise one reported in previous literature and is characterized as a duplex S – N curve composed of two different S – N curves corresponding to the respective fracture modes. From detailed observations of the fracture surface and the fatigue crack origin, the mechanisms for the internal fracture mode and the characteristics of the S – N curve are discussed.  相似文献   

11.
Rolling contact fatigue tests were carried out on ring specimens made of quenched and tempered SAE 5135 gear steel with three different steel-production processes, through a bi-disc machine under pure rolling condition and water lubrication. Early formation of micro-pits then coalescing into macro-pits was observed on the rolling surface, while the final failure was caused by subsurface originated spalling phenomena. Microscope analysis of specimens section highlighted the complex surface and subsurface crack layout, and permitted to recognise sulphides as preferential sites for cracks initiation. The inclusion content was analysed throughout the extreme value statistics and the maximum expected inclusion in the Hertzian contact zone was introduced in a failure assessment diagram recently proposed, which resulted effective in predicting the specimen failures.  相似文献   

12.
Corrosion fatigue behaviour and microstructural characterisation of G20Mn5QT cast steel are investigated in simulated seawater. Fractography is performed by using scanning electron microscopy (SEM). The macroscale fracture surface and microstructure of the failed specimen are acquired including the crack initiation, crack propagation, and pitting evolution. The maximum cyclic stress (S) versus number of cycles to failure (N) curves is derived by three‐parameter fatigue curve method. Fatigue life is predominantly controlled by the corrosion pitting‐induced crack initiation when tested in simulated seawater at lower stress levels. As the maximum cyclic stress is less than 185 MPa, the chloride ion erosion is the main influence factor, which affects the fatigue failure of the G20Mn5QT cast steel in simulated seawater.  相似文献   

13.
The high cycle and Very-High-Cycle Fatigue (VHCF) properties of a structural steel with smooth and notched specimens were studied by employing a rotary bending machine with frequency of 52.5 Hz. For smooth specimens, VHCF failure did occur at fatigue cycles of 7.1 × 108 with the related SN curve of stepwise tendency. Scanning Electron Microscopy (SEM) was used for the observations of the fracture surfaces. It shows that for smooth specimens the crack origination is surface mode in the failure regime of less than 107 cycles. While at VHCF regime, the material failed from the nonmetallic inclusion lies in the interior of material, leading to the formation of fisheye pattern. The dimensions of crack initiation region were measured and discussed with respect to the number of cycles to failure. The mechanism analysis by means of low temperature fracture technique shows that the nonmetallic inclusion in the interior of specimen tends to debond from surrounding matrix and form a crack. The crack propagates and results to the final failure. The stress intensity factor and fatigue strength were calculated to investigate the crack initiation properties. VHCF study on the notched specimens shows that the obtained SN curve decreases continuously. SEM analysis reveals that multiple crack origins are dominant on specimen surface and that fatigue crack tends to initiate from the surface of the specimen. Based on the fatigue tests and observations, a model of crack initiation was used to describe the transition of fatigue initiation site from subsurface to surface for smooth and notched specimens. The model reveals the influences of load, grain size, inclusion size and surface notch on the crack initiation transition.  相似文献   

14.
The present paper deals with the influence of non-metallic inclusions on fatigue life in the high cycle fatigue and the very high cycle fatigue regime. For that purpose, several castings of steel 42CrMo4 (AISI 4140, DIN EN 1.7225) were produced by using recently developed novel metal-melt filters. The specimens were tested in hot-isostatically pressed and heat treated condition. After fatigue failure every fracture surface was intensively investigated by scanning electron microscopy in order to define the type, the size, the chemical composition, the morphology and the location of the crack initiating discontinuity. Subsequently, Murakami’s √area model was used for the evaluation of the influence of non-metallic inclusions on the fatigue life. In the present investigation four common types of chemical compositions of crack initiating discontinuities were identified. Furthermore, four different internal failure types and their influence on the fatigue life in cast steel were investigated and described. Thus, the present contribution proposes a basic correlation determined from fatigue lives in case of various internal crack initiation types. The key parameters for fatigue life prediction in case of internal fatigue failure in the very high cycle fatigue regime are (i) the size of the crack initiating discontinuity, (ii) the inclusion depth and (iii) the crack initiating failure type.  相似文献   

15.
The chevron V-notched bend bar specimen recently proposed as a practical approach to the fracture toughness testing of brittle materials has been further evaluated. The accuracy of the stress intensity expression has been improved through experimental analysis. The applicability of this specimen for determining the environment induced cracking threshold, KIscc was also investigated. Fracture toughness results developed for Pyroceram 9606, 7079-T6 aluminum and the apparent KIscc value of AISI 4340 steel exposed to hydrogen sulfide gas show that the chevron V-notched bend bar specimen can yield data essentially identical to that developed with more conventional fatigue precracked specimens. However, results also show that when catastrophic failure of a specimen occurs rather than the expected stable crack growth, the test is invalid. Further work is required to resolve this complication.  相似文献   

16.
非金属夹杂物与钢的韧性研究   总被引:1,自引:0,他引:1  
20年前已经研究过非金属夹杂物对钢性能的影响。本文较为详细地研究试样中含有硫化物和氮化物两种类型的夹杂物对钢韧性的影响。根据一系列试样测定了几种断裂参数 ,用以验算 Krafft和其他学者建立的断裂模型。实验结果得出这样结论 :按照 Krafft公式计算的 KIC值与通过实验获得的 KIC值相一致。  相似文献   

17.
A critical evaluation of endurance limits under very high cycle (giga-cycle range) fatigue is presented. The available experimental results are analyzed using the unified damage approach developed earlier by the authors. It is shown that the experimental evidence supports the theory that endurance limits at very high cycle fatigue are related to thresholds for crack propagation of incipient cracks from stress-concentration sites. The crack propagation behavior of the incipient cracks is related to the accumulation of internal stresses that is needed to augment the preexisting stresses. These in turn cause the incipient cracks to initiate at stress concentrations which either grow or arrest depending on the magnitude and gradient of the internal stresses. Micro-deformations at localized stress concentrations, such as inclusions, can further augment the local internal stresses needed for the incipient crack to nucleate and propagate. The presence of trapped hydrogen at inclusions can reduce the resistance to deformation, and hence reduce crack initiation and growth process. Understanding the role of preexisting stress concentrations (such as notches, inclusions, and hard second phases) provides a bridge for understanding the fatigue damage evolution in a smooth specimen compared to that in a cracked specimen. Kitagawa diagram helps provide this necessary bridge. Several critical issues related to fatigue testing method; fracture surface analysis, load history and environment are raised in this paper and briefly discussed in a self-consistent manner based on our unified damage approach.  相似文献   

18.
对洁净车轮钢在不同温度下进行正火处理,得到不同晶粒尺寸的显微组织,然后对车轮钢进行室温冲击试验,利用扫描电镜对冲击试样断口形貌进行观察,研究了夹杂物和晶粒尺寸对洁净车轮钢室温冲击韧度的影响。结果表明:部分车轮钢冲击试样以夹杂物起裂,夹杂物类型为Ti(C,N),另一部分冲击试样断口起裂源处则未发现有夹杂物,但尺寸在10μm以下的Ti(C,N)夹杂物对车轮钢的冲击韧度没有明显的影响,而晶粒尺寸对车轮钢的冲击韧度有明显影响;其主要原因是室温下车轮钢冲击断裂的临界事件是微裂纹穿过晶界扩展引发解理断裂,因此晶粒尺寸是决定洁净车轮钢冲击韧度的主要因素。  相似文献   

19.
Damage of machine components occur when cracks form and continue to grow to a size large enough to cause fracture. In order to understand the crack propagation phenomena, non-destructive evaluation methods that can be correlated to measurements around the fatigue crack tips are necessary. In the present work, we developed a scanning Hall probe microscope (SHPM) equipped with a three-dimensional sensor and observed magnetic fields around fatigue cracks at room temperature in air while they were growing. In order to study the relation between plastic deformations and magnetic flux densities, both as-received non-heat-treated and heat-treated (quenched and tempered) specimens were used. Medium carbon low alloy steel specimens (S45C, JIS) were used in the experiments. The area around the crack tip was magnetized and the changes in the area were observed. The changes in magnetic fields in soft and hard specimens with the same intensity factors were compared. A strong correlation between the changes in the magnet fields and plastic deformation areas was found.  相似文献   

20.
The influence of hydrogen on low cycle fatigue (LCF) of 3.5NiCrMoV steel electrochemically hydrogen charged in the acidified pH 2 0.1 M Na2SO4 solution is studied. In the presence of hydrogen, the fatigue life decreases significantly by ≈70 to ≈80% by: (i) the crack initiation period is decreased; and (ii) the crack growth rate is accelerated. SEM observation indicates that in the presence of hydrogen, the fracture surface shows flat transgranular fracture with vague striations and some intergranular fracture at lower stresses. The fatigue crack growth rate increases with increasing cyclic stress amplitude and with hydrogen fugacity. Once the fatigue crack reaches a critical length, the specimen becomes mechanical unstable and fracture due to ductile overload occurs. The hydrogen contribution to the final fracture process is not significant.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号