首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The allowable capacity of conventional roof-to-wall metal connectors is based on results of unidirectional component tests that do not simulate triaxial aerodynamic loading effects induced by high-wind events. The results of wind and wind-driven rain tests conducted at a full-scale facility were used to create a database on aerodynamic and aerohydrodynamic load effects on roof-to-wall connectors. Based on these results, three axial mean force components (triaxial mean loads) were combined into a series of resultant mean force vectors. A new test protocol was then developed for roof-to-wall connectors under simulated triaxial loading as opposed to simple uniaxial loading. The findings confirm that current testing methods tend to overestimate the actual load capacities of metal connectors. The performance of a nonintrusive roof-to-wall connector system using fiber-reinforced polymer (FRP) ties was also tested and compared with that of a traditional metal connector under simulated aerodynamic loads. The test results demonstrated the validity of FRP ties as an alternative to hurricane clips for use in timber roof-to-wall connection systems.  相似文献   

2.
3.
The use of fiber-reinforced polymer (FRP) reinforcement is a practical alternative to conventional steel bars in concrete bridge decks, safety appurtenances, and connections thereof, as it eliminates corrosion of the steel reinforcement. Due to their tailorability and light weight, FRP materials also lend themselves to the development of prefabricated systems that improve constructability and speed of installation. These advantages have been demonstrated in the construction of an off-system bridge, where prefabricated cages of glass FRP bars were used for the open-post railings. This paper presents the results of full-scale static tests on two candidate post–deck connections to assess compliance with strength criteria at the component (connection) level, as mandated by the AASHTO Standard Specifications, which were used to design the bridge. Strength and stiffness until failure are shown to be accurately predictable. Structural adequacy was then studied at the system (post-and-beam) level by numerically modeling the nonlinear response of the railing under equivalent static transverse load, pursuant to well-established structural analysis principles of FRP RC, and consistent with the AASHTO LRFD Bridge Design Specifications. As moment redistribution cannot be accounted for in the analysis and design of indeterminate FRP RC structures, a methodology that imposes equilibrium and compatibility conditions was implemented in lieu of yield line analysis. Transverse strength and failure modes are determined and discussed on the basis of specification mandated requirements.  相似文献   

4.
A fiber-reinforced polymer (FRP) deck-to-girder connection was evaluated for fatigue resistance and residual capacity in the transverse direction. The connection consisted of three shear studs cast into a trapezoidal cell of a FRP sandwich deck. Steel spirals were positioned around each shear stud to aid in grout confinement. Test fixturing consisted of multiple girders and tie downs to induce realistic loading of the connection due to wheel loads. The connection was fatigued according to AASHTO LRFD Specifications for 10.5?million?cycles (75?year design life) and tested for residual capacity. The connection survived fatigue testing without failure. The haunch exhibited minimal debonding and cracking. Connection capacity after one lifetime of fatigue cycles exceeded strength limit state requirements.  相似文献   

5.
6.
The present study aims at investigating the applicability of the Florida Building Code (FBC) wind provisions and demonstrating benefits of the shuttering on the openings in the Florida House Learning Center, a unique demonstration structure with a large number of windows and sliding glass doors. The wind analysis of the building was performed according to the FBC on the currently existing structure with no hurricane shutters and on the strengthened structure with hurricane shutters added to all openings. It was found that wind pressures on walls and roofs for the unshuttered Florida House structure decreased by 0–95% due to the addition of hurricane shuttering. The reduction of the design forces for wall studs, anchor bolts, and uplift varies from 0 to 38% due to the addition of shutters. The only reason for wind pressure differences on the shuttered and unshuttered Florida House structure was the difference between the internal pressures on the “enclosed” and “partially enclosed” buildings, respectively. The significant hurricane mitigation effects of hurricane shutters on the Florida House hurricane vulnerability is demonstrated through the comparison of wind analysis between the shuttered and unshuttered structure.  相似文献   

7.
The use of fiber-reinforced polymer (FRP) for strengthening concrete structures has grown remarkably during the past few years. In spite of exhibiting superior properties, the safety of usage is questionable as FRP undergoes brittle debonding failure. The aim of this study is to review and compare the existing research on bond failure between FRP and concrete substrates. Among the different failure modes, there has been little research in terms of intermediate crack-induced interfacial debonding and fewer strength models are developed for predicting such failures. Conducting a simple shear test on the FRP bonded to a concrete substrate can simulate this type of failure mode. Twelve specimens were tested to study the influence of concrete strength and the amount of FRP on the ultimate load capacity of a FRP–concrete bond under direct shear. Existing experimental work was collected from the literature and consists of an extensive database of 351 concrete prisms bonded to FRP and tested in direct shear tests. The analytical models from various sources are applied to this database and the results are presented.  相似文献   

8.
An existing mountable safety barrier system, previously crash tested successfully on a wood bridge deck, was evaluated for use on a fiber reinforced plastic (FRP) bridge deck. In an attempt to avoid expensive full-scale crash testing, components of the existing system were evaluated using worst case conditions on two dynamic bogie crash tests and a series of computer simulations using nonlinear finite-element analysis. Simulation results closely approximated the physical results, with both displaying similar deformation, damage, and force levels. Both testing and simulation demonstrated that the barrier should function sufficiently if used on the FRP deck system. Further, the development of an accurate model makes it possible to evaluate the potential success of the existing system for use on other bridge decks. As an example, a more rigid bridge deck, similar to reinforced concrete, was evaluated. Results showed that due to the stiffer deck, more of the impact energy must be absorbed by the posts and attachment hardware, resulting in significantly more deformation than when used on the flexible FRP deck.  相似文献   

9.
Many reinforced concrete (RC) frame structures designed according to pre1970 strength-based codes are susceptible to abrupt strength deterioration once the shear capacity of the columns is reached. Fiber composites are used to increase the shear strength of existing RC columns and beams by wrapping or partially wrapping the members. Increasing the shear strength can alter the failure mode to be more ductile with higher energy dissipation and interstorey drift ratio capacities. The objective of this study was to analytically evaluate the effect of varying distributions of fiber-reinforced polymer (FRP) rehabilitation on the seismic performance of three existing RC frames with different heights when subjected to three types of scaled ground motion records. The FRP wrapping is designed to increase the displacement ductility of frame members to reach certain values representing moderate ductility and high ductility levels. These values were assumed based on previous experimental work conducted on members wrapped using FRP. The study also investigates the effect of the selected element’s force–displacement backbone curve on the capacities of the structures with respect to maximum interstory drift ratio, maximum peak ground acceleration, or peak ground velocity resisted by the frames, maximum storey shear-to-weight ratio and maximum energy dissipation. It was found that for low-rise buildings, the FRP rehabilitation of columns only was effective in enhancing the seismic performance; while for high-rise ones, rehabilitation of columns only was not as effective as rehabilitation of both columns and beams. Ignoring representing the postpeak strength degradation in the hysteretic nonlinear model of FRP-rehabilitated RC members was found to lead to erroneous overestimation of the seismic performance of the structure.  相似文献   

10.
Earthquake damage to unreinforced masonry buildings has shown the vulnerability of perimeter walls to out-of-plane failure. This paper describes a study that was carried out to develop and test innovative fiber reinforced polymer (FRP) rehabilitation techniques that meet the stringent requirements for strengthening historical buildings and to be cost-effective alternatives applicable to other existing masonry structures. Unobtrusive FRP rehabilitation techniques that utilize flexible carbon fiber composite cables, mounted near the surface of the fa?ade walls in epoxy-filled grooves in the bed and head joints, were developed. Ten full size walls were constructed of clay bricks and retrofitted using the developed FRP rehabilitation techniques. The test results demonstrated the high efficiency of the rehabilitation techniques under both monotonic and quasistatic cyclic loadings. Significant increases in ultimate capacities, energy absorption, and deformability were achieved for various reinforcing schemes compared to the behavior of the unreinforced walls.  相似文献   

11.
The Structural Engineering Institute of the American Society of Civil Engineers Committee on the Reliability-Based Design of Wood Structures recently completed a special project entitled “The next step for ASCE 16: Performance-based design of wood structures.” This paper presents the methodology and several illustrative examples of the design of residential wood-frame buildings for flood. The control variable of interest is losses in terms of either U.S. dollars or percent of construction costs. To do this, assembly-based vulnerability is coupled with existing durability data for wood and wood-based products; and when not available, logical assumptions were required. A series of illustrative examples are shown with various mitigation strategies applied to investigate the change in loss fragilities, and subsequently, economic risk if the fragility is recoupled with the flood hazard curve. The method is shown to work efficiently and the results are logical, thus it may find application by aiding developers, land-use planners, engineers, and potentially owners of wood-frame buildings in their design and retrofit decisions.  相似文献   

12.
Fiber-reinforced polymer (FRP) application is a very effective way to repair and strengthen structures that have become structurally inefficient over their life span. This paper investigates the applicability of existing models for the prediction of debonding failure in RC beams externally strengthened with FRP. It is very important to predict the limit at which FRP debonds from the beam in order to arrest premature failures. The existing models lack the thoroughness of bond predictability. This is mainly due to the development models on the basis of small amount of tested data. Hence, there is a need to compare the existing work to an extensive database of strengthened beams. Existing experimental work was collected from literature to create a database of 163 beams tested in three point and four point bending tests. Various models are applied to this database and behavior of each model is analyzed using statistical parameters and degree of uncertainty in prediction.  相似文献   

13.
The effectiveness of fiber-reinforced polymer (FRP) and textile-reinforced mortar (TRM) jackets was investigated experimentally and analytically in this study to confine old-type reinforced concrete (RC) columns with limited capacity because of bond failure at lap-splice regions. The local bond strength between lap-spliced bars and concrete was measured experimentally along the lap-splice region of six full-scale RC columns subjected to cyclic uniaxial flexure under constant axial load. The bond strength of the two column specimens tested without retrofitting was found to be in good agreement with the predictions given by two existing bond models. These models were modified to account for the contribution of composite material jacketing to the bond resistance between lap-spliced bars and concrete. The effectiveness of FRP and TRM jackets against splitting at lap splices was quantified as a function of jacket properties and geometry as well as in terms of the jacket effective strain, which was found to depend on the ratio of lap-splice length to bar diameter. Consequently, simple equations for calculating the bond strength of lap splices in members confined with composite materials (FRP or TRM) are proposed.  相似文献   

14.
The near-surface-mounted (NSM) method has proved to be a reliable alternative to the existing externally bonded (EB) method for the repair and strengthening of concrete structures using fiber-reinforced polymer (FRP) composites. This technique is especially advantageous in bridge deck upgrades for larger barriers and slab overhang strengthening. This paper presents the results of a comparison of the flexural behavior of bridge slab overhangs strengthened in negative bending moment regions with various types of NSM reinforcement that differ in surface condition (e.g., textured and sand coated), cross-sectional shape (e.g., round and square), material type (carbon and glass), and prestressing effect. Eleven full-scale overhang specimens (1.524 m long in overhang and 0.914 m wide) were tested under a cantilever condition. Test results showed that the FRP NSM reinforcements were effective in increasing both yield and ultimate strength of predamaged slab overhangs. All surface treatments were more beneficial than the smooth condition, and the square-shaped reinforcement displayed better performance than the round shape. The prestressing unit developed in this study is simple to apply and could be further explored for field applications.  相似文献   

15.
Conventional pile materials such as steel, concrete, and timber are prone to deterioration for many reasons. Fiber-reinforced polymer (FRP) concrete composites represent an alternative construction material for deep foundations that can eliminate many of the performance disadvantages of traditional piling materials. However, FRP composites present several difficulties related to constructability, and the lack of design tools for their implementation as a foundation element. This paper describes the results of an experimental study on frictional FRP/dense sand interface characteristics and the constructability of FRP–concrete composite piles. An innovative toe driving technique is developed to install the empty FRP shells in the soil and self-consolidating concrete is subsequently cast in them. The experimental program involves interface shear tests on small FRP samples and uplift load tests on large-scale model piles. Two different FRP pile materials with different roughness and a reference steel pile are examined. Static uplift load tests are conducted on different piles installed in soil samples subjected to different confining pressures in the pressure chamber. The results showed that the interface friction for FRP materials compared favorably with conventional steel material. It was shown that toe driving is suitable for installation of FRP piles in dense soils.  相似文献   

16.
The research work reported in this paper involves investigation of the tensile behavior of fiber-reinforced polymer (FRP) ground anchors. Variables of the tests on the anchor models were anchor fixed length, tendon type, and tendon constituent. Sixteen monorod and four multirod grouted aramid FRP (AFRP) (Arapree and Technora) and carbon FRP (CFRP) (CFCC and Leadline) anchors were tested according to standard methods of tensile tests and sustained load tests under different load levels. Test results indicated that AFRP Arapree and Technora monorod anchors showed higher displacement and slip in comparison with CFRP CFCC and Leadline anchors. Technora anchors failed because of the detaching of winding fibers from the core of the rod. CFRP anchors had a higher tensile capacity and lower creep displacement than AFRP anchors. All the tested CFRP monorod and FRP multirod anchors with a 1,000-mm fixed length appeared to have an acceptable tensile behavior according to existing codes. Creep behavior appeared to control the long-term tensile capacity of prestressed FRP ground anchors. The recommended working load for prestressed FRP ground anchors is 0.40fpu for AFRP rods and 0.50fpu for CFRP rods, where fpu is the ultimate load or strength of anchor tendons.  相似文献   

17.
Based on a series of experimental tests on notched concrete beams externally bonded with unidirectional fiber-reinforced polymer (FRP) sheets, this paper investigates the bond characteristics of FRP sheet-concrete interfaces under dowel load, which acts vertically on the FRP sheet and leads to a mix-mode interface peeling. The peeling properties of FRP sheet-concrete interfaces under the dowel load are evaluated in terms of their interface dowel load-carrying capacity, critical interface peeling angle, and interface peeling fracture energy. Experimental parameters include strength of concrete substrate, tension stiffness of FRP sheets, properties of bonding adhesives, concrete surface treatment methods, and length of precrack set between the FRP sheet and concrete substrate. Analytical models clarifying the relationships among the interface dowel load-carrying capacity, the interface peeling angle, and the interface peeling fracture energy are built up and also verified by test results. Further, this paper shows how to use the interface peeling fracture energy calibrated from the present dowel tests for the practical design of spalling prevention, which is now becoming a popular application of FRP sheets for the maintenance and repair of existing concrete structures in Japan.  相似文献   

18.
Reinforced concrete beams are now commonly retrofitted using externally bonded (EB) fiber reinforced polymer (FRP) plates as the technique is both inexpensive and unobtrusive. However, tests have shown that EB carbon FRP plates tend to debond at low strains, which can severely limit the ductility or moment redistribution to such an extent that guidelines often preclude moment redistribution. This paper reports the moment redistribution achieved in tests on nine near full-scale two-span continuous reinforced concrete beams that were retrofitted with near-surface mounted (NSM) plates. The plates were either carbon FRP or high yield steel strips which were adhesively bonded within saw grooves cut into the concrete cover on the tension face or sides of the beam. It was found that the debonding strains of these NSM plates were considerably larger than those associated with EB plates and that substantial amounts of moment redistribution occurred. These tests suggest that NSM plates can be used to increase the strength of reinforced concrete structures with little, if any, loss of ductility.  相似文献   

19.
In some terrorist attacks, it is possible that RC structures might be subjected to more than a single explosion. RC structures designed without the consideration of blast effects tend to lose their capacity after the first explosion. The use of a fiber reinforced polymer (FRP) sheet has been proven to enhance the performance and resistance of an RC member under a single explosion test. However, there appears to have been no experimental programs conducted to assess the performance of FRP-strengthened RC members subjected to multiple explosions reported in the literature. This paper, therefore, presents experimental results for the behavior of RC slabs strengthened by an FRP sheet after undergoing single, double, and triple independent explosion testing. Results from these blast tests indicate that the FRP sandwich RC slab tested was able to sustain the subsequent second explosion of greater impact. A brittle shear failure with FRP debonding was observed following the third explosion on this FRP-strengthened RC slab.  相似文献   

20.
A fiber-reinforced polymer (FRP) composite cellular deck system was used to rehabilitate a historical cast iron thru-truss structure (Hawthorne St. Bridge in Covington, Va.). The most important characteristic of this application is reduction in self-weight, which raises the live load-carrying capacity of the bridge by replacing the existing concrete deck with a FRP deck. This bridge is designed to HL-93 load and has a 22.86?m clear span with a roadway width of 6.71?m. The panel-to-panel connections were accomplished using full width, adhesively (structural urethane adhesive) bonded tongue and groove splices with scarfed edges. To ensure proper construction, serviceability, and strength of the splice, a full-scale two-bay section of the bridge with three adhesively bonded panel-to-panel connections was constructed and tested in the Structures Laboratory at Virginia Tech. Test results showed that no crack initiated in the joints under service load and no significant change in stiffness or strength of the joint occurred after 3,000,000 cycles of fatigue loading. The proposed adhesive bonding technique was installed in the bridge in August 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号