首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
An analytical comparison between three techniques for the identification of modal properties of structures when subjected to ambient vibrations is performed. The algorithms examined include the eigensystem realization algorithm with data correlations, the prediction error method through least squares, and the stochastic subspace identification (SSI) technique. Both analytical and experimental data from a four-storey building scaled at 1:3 are used to perform these evaluations. The level of noise added to the simulated data is varied to study the robustness of the techniques. All techniques are fully automated, allowing for assessments to be conducted through Monte Carlo simulations. The results indicate that the SSI technique provides the most accurate identification of natural frequencies and mode shapes even with high noise levels, all while requiring the least amount of experience for implementation.  相似文献   

2.
System identification is an area which deals with developing mathematical models to characterize the input-output behavior of an unknown system by means of experimental data. Structural health monitoring (SHM) provides the tools and technologies to collect and analyze input and output data to track the structural behavior. One of the most commonly used SHM technologies is dynamic testing. Ambient vibration testing is a practical dynamic testing method especially for large civil structures where input excitation cannot be directly measured. This paper presents a conceptual and reliable methodology for system identification and structural condition assessment using ambient vibration data where input data are not available. The system identification methodology presented in this study is based on the use of complex mode indicator functions (CMIFs) coupled with the random decrement (RD) method to identify the modal parameters from the output only data sets. CMIF is employed for parameter identification from the unscaled multiple-input multiple-output data sets generated using the RD method. For condition assessment, unscaled flexibility and the deflection profiles obtained from the dynamic tests are presented as a conceptual indicator. Laboratory tests on a steel grid and field tests on a long-span bridge were conducted and the dynamic properties identified from these tests are presented. For demonstrating condition assessment, deflected shapes obtained from unscaled flexibility are compared for undamaged and damaged laboratory grid structures. It is shown that structural changes on the steel grid structure are identified by using the unscaled deflected shapes.  相似文献   

3.
In this paper we present a simple, yet powerful, method for the identification of stiffness matrices of structural and mechanical systems from information about some of their measured natural frequencies and corresponding mode shapes of vibration. The method is computationally efficient and is shown to perform remarkably well in the presence of measurement errors in the mode shapes of vibration. It is applied to the identification of the stiffness distribution along the height of a simple vibrating structure. An example illustrating the method’s ability to detect structural damage that could be highly localized in a building structure is also given. The efficiency and accuracy with which the method yields estimates of the system’s stiffness from noisy modal measurement data makes it useful for rapid, on-line damage detection of structures.  相似文献   

4.
In the last years an increasing interest has been devoted to all the topics related to the security and safety of people. Particular attention has been paid to health monitoring of large civil structures hosting many people, such as high-rise buildings and stadiums. Some extraordinary events, such as the Millennium Bridge oscillations in London, excited by pedestrians, or the Bruce Springsteen concert at the Ullevi Stadium in which coordinated jumps from the crowd caused serious damage to the structure, and drew attention toward a deeper and more careful study of all those problems related to the dynamic behavior of civil structures and their interaction with crowds. Research on these topics is also aimed, among others, at developing techniques allowing for a continuous monitoring of the structure, starting from a set of measurements that can be performed continuously, 24?h a day, without the need to stop the structure's functionality. The vast scientific literature confirms the possibility of relating structural health to the evolution of modal parameters, often reaching the aim of localizing any eventual damage, a task otherwise impossible with different techniques. This paper shows part of a long lasting project involving Politecnico di Milano in the setting up of a permanent health monitoring system at the G. Meazza Stadium in Milan. The aim of this project was the evaluation of the actual health state of the structures constituting the stands of the stadium and the deployment of a permanent monitoring system to record the vibration levels reached in all substructures during each event. Evaluation of the actual structure condition was performed by the use of ambient vibration, which was also checked against traditional experimental modal analysis, performed by using an inertial force given by a hydraulic actuator and a detailed measurement mesh. This offered the chance to exploit all possible information concerning natural frequencies, modal shapes, and damping factors. This task is extremely time consuming and expensive, therefore, it cannot be repeated very often. The possibility of using the data coming from the permanent monitoring system, which is about to be installed, is then an attractive perspective to improve structural diagnosis. It is expected that using operational modal analysis techniques will mean knowledge of the excitation applied to the structure will not be required. The parameter estimation obtained by this technique is usually affected by a spread, given both by the uncertainty of the adopted identification techniques and the influence of external parameters, such as crowd loading or temperature. As damage identification is related to changes of the modal parameters, the evaluation of their normal spread is fundamental to fix a threshold in order to identify possible worrysome situations. This paper deals with the identification of the spread in the modal parameter estimation of one of the grandstands of the so-called 3° ring of the G. Meazza Stadium in Milan, performed analyzing data collected over more than one year. Vibration data have been recorded during different events, such as soccer matches and concerts. The considered data came from a set of sensors similar to that which is to be installed for the permanent monitoring system, to check about the possibility to use the monitoring system as a diagnostic tool for the structure. A study was also carried out to identify critical aspects in the sensors’ choice and their placement, in order to provide useful information about the design of the permanent monitoring system. The presented results can be used to determine confidence intervals out of which changes in the modal properties can be considered anomalous, and so, worthy of being deeply investigated to assess structural integrity.  相似文献   

5.
This paper describes an arch type steel footbridge, its analytical modeling, modal testing, finite-element model updating, and dynamic analysis. A modern steel footbridge which has an arch type structural system and is located on the Karadeniz coast road in Trabzon, Turkey is selected as an application. An analytical modal analysis is performed on the developed three-dimensional finite-element model of footbridge to provide analytical frequencies and mode shapes. Field ambient vibration tests on the footbridge deck under natural excitation such as human walking and traffic loads are conducted. The output-only modal parameter identification is carried out by using peak picking of the average normalized power spectral densities in the frequency domain and stochastic subspace identification in the time domain, and dynamic characteristics such as natural frequencies, mode shapes, and damping ratios are determined. The finite-element model of the footbridge is updated to minimize the differences between analytically and experimentally estimated modal properties by changing some uncertain modeling parameters such as material properties. Dynamic analyses of the footbridge before and after finite-element model updating are performed using the 1992 Erzincan earthquake record. At the end of the study, maximum differences in the natural frequencies are reduced from 22 to only 5% and good agreement is found between analytical and experimental dynamic characteristics such as natural frequencies and mode shapes by model updating. Also, maximum displacements and principal stresses before and after model updating are compared with each other.  相似文献   

6.
This paper presents the analytical modeling, modal testing, and finite-element model updating for a two-span masonry arch bridge. An Ottoman masonry arch bridge built in the 19th century and located at Camlihemsin, Rize, Turkey is selected as an example. Analytical modal analysis is performed on the developed 3D finite-element model of the bridge to obtain dynamic characteristics. The ambient vibration tests are conducted under natural excitation such as human walking. The operational modal analysis is carried out using peak picking method in the frequency domain and stochastic subspace identification method in the time domain, and dynamic characteristics (natural frequencies, mode shapes, and damping ratios) are determined experimentally. Finite-element model of the bridge is updated to minimize the differences between analytically and experimentally estimated dynamic characteristics by changing boundary conditions. At the end of the study, maximum differences in the natural frequencies are reduced on average from 18 to 7% and a good agreement is found between analytical and experimental dynamic characteristics after finite-element model updating.  相似文献   

7.
This is the first of two papers that present the results of a comprehensive and systematic study into the effects of false flooring on the vibration serviceability of long-span concrete floors. In this paper, advanced modal testing technology was utilized to determine modal properties of long-span concrete floors (natural frequencies, modal damping ratios, and mode shapes) before and after the installation of false flooring. It was found that false flooring had the capacity to change modal properties significantly, particularly modal damping ratios, which had increases of up to 89%. Parametric studies using updated finite element models were also performed, which showed that the false flooring contributed also to floor stiffness. However, changes in modal properties were not consistent across all modes of vibration and it was not possible to predict easily which modes would be affected beneficially by the installation of false flooring.  相似文献   

8.
Buildings with large column-free floors or long-cantilevered structures can be susceptible to annoying vibrations due to everyday occupants’ activities such as walking. Computer modeling and analytical representation of building structural properties to predict the floor response subjected to excitations due to human activities are important issues that require further studies. Vibration testing and analysis of built structures can assist in more accurate estimation of structure dynamic properties. This paper presents the results of the modal testing conducted on an office building floor and analysis of the collected vibration measurements. It compares these results with the structural response using computer analyses. It also presents a sensitivity study to assess the importance of various structural parameters on the floor dynamic response. From the results presented, it is concluded that for the structure used in this study the raised flooring and nonstructural elements acted mainly as added mass and did not contribute to the floor damping. Conclusions are also made on the importance of various structural parameters on floor response and the analysis of the modal test results.  相似文献   

9.
Analysis and Design of Vibration Isolation System Using Open Trenches   总被引:1,自引:0,他引:1  
Field vibration tests were carried out at a proposed site for the vibration testing room, and 2D numerical analysis using finite difference tool FLAC 5.0 was performed to suggest effective vibration isolation systems. In the analysis, the numerical model is first calibrated with respect to material properties, damping value, and boundary conditions to obtain the output comparable to the field test results. The calibrated model was further used to perform a parametric study by (1)?providing vibrating input motions from vibrating machines to be operated; (2)?using two depths of cutoff trench; and (3)?providing gravel bed, gravel bed with rubber pad, and gravel bed with rubber pad and cutoff trench to study the isolation effects. Comparing the results from the parametric studies with the human perception level of vibration, a decision on the isolation system was determined.  相似文献   

10.
This first part of a two-part paper on the John A. Roebling suspension bridge (1867) across the Ohio River is an analytical investigation, whereas Part II focuses on the experimental investigation of the bridge. The primary objectives of the investigation are to assess the bridge’s load-carrying capacity and compare this capacity with current standards of safety. Dynamics-based evaluation is used, which requires combining finite-element bridge analysis and field testing. A 3D finite-element model is developed to represent the bridge and to establish its deformed equilibrium configuration due to dead loading. Starting from the deformed configuration, a modal analysis is performed to provide the frequencies and mode shapes. Transverse vibration modes dominate the low-frequency response. It is demonstrated that cable stress stiffening plays an important role in both the static and dynamic responses of the bridge. Inclusion of large deflection behavior is shown to have a limited effect on the member forces and bridge deflections. Parametric studies are performed using the developed finite-element model. The outcome of the investigation is to provide structural information that will assist in the preservation of the historic John A. Roebling suspension bridge, though the developed methodology could be applied to a wide range of cable-supported bridges.  相似文献   

11.
The early detection of cracks, fatigue, corrosion, and structural failure in aging aircraft is one of the major challenges in the aircraft industry. Common inspection techniques are time consuming and hence can have strong economic implications due to aircraft downtime. As a result, during the past decade a number of methodologies have been proposed for detecting structural damage based on variations in the structure’s dynamic characteristics. This paper describes the implementation of the natural excitation technique (NExT) combined with the eigensystem realization algorithm (ERA) to determine the dynamic characteristics of a T-34A Mentor acrobatic category aircraft and a modified DC-3 cargo/transport category aircraft. In-flight acceleration data were processed using NExT-ERA to monitor the predominant natural frequencies and associated mode shapes of the aircraft for varying flight conditions. The results show the effectiveness of this modal identification methodology and the possibility of implementing it in a real-time structural health monitoring system for aircraft.  相似文献   

12.
This paper presents experimental results and a numerical analysis of the reinforced concrete (RC) beams strengthened in flexure with various externally bonded carbon fiber-reinforced polymer (CFRP) configurations. The aim of the experimental work was to investigate the parameters that may delay the intermediate crack debonding of the bottom CFRP laminate, and increase the load carrying capacity and CFRP strength utilization ratio. Ten rectangular RC specimens with a clear span of 4.2?m, categorized in two series, were tested to evaluate the effect of using the additional U-shaped CFRP systems on the intermediate crack debonding of the bottom laminate. Two different configurations of the additional systems were proposed, namely, continuous U-shaped wet layup sheets and spaced side-bonded CFRP L-shaped laminates. The fiber orientation effect of the side-bonded sheets was also investigated. A numerical analysis using an incremental nonlinear displacement-controlled 3D finite-element (FE) model was developed to investigate the flexural and CFRP/concrete interfacial responses of the tested beams. The finite-element model accounts for the orthotropic behavior of the CFRP laminates. An appropriate bond-slip model was adopted to characterize the behavior of the CFRP/concrete interface. Comparisons between the FE predictions and experimental results show very good agreement in terms of the load-deflection and load-strain relationships, ultimate capacities, and failure modes of the beams.  相似文献   

13.
This paper compares the behavior of an embankment with nonsymmetric geometry built on soft soil with that predicted numerically using four elastoplastic soil models. Two of these models are based on isotropic conditions (Modified Cam-Clay on its own or in association with Von Mises) and two other are derived from anisotropic conditions (Melanie on its own or conjugated with Mohr Coulomb). The performance of the models, whose parameters are derived from experimental data, is checked against triaxial tests results. For the embankment, the measured and computed displacements and excess pore pressure are compared, with the isotropic models performing best. The maximum horizontal displacements versus settlements, the change in excess pore pressure versus vertical stress, the extent of the yield domain and the contours of the effective vertical and horizontal stress increments are also examined. The numerical results are explained based on the characteristics of the numerical models, namely the size and shape of the yield surface. The embankment, despite its nonsymmetric geometry, exhibits some similarities with typical behavior.  相似文献   

14.
This study presents investigations regarding visual inspection, dynamic testing, and finite-element modeling of an approximately 80-year old reinforced concrete tied-arch railway bridge that is still in service in Turkey. Investigations were conducted as part of a systematic periodic inspection along Ankara-Zonguldak railway line. The bridge is subject to heavy freight trains with increasing axle loads. Field tests such as material tests and dynamic tests were used to calibrate the finite-element model of the bridge. Detailed information regarding testing and model updating procedure is given. Based on test results, computer model was refined. The calibrated model of the bridge structure was then used for structural assessment and evaluation. Despite sufficient overall safety, local details were found to be problematic. Due to insufficient bond length in hanger-to-arch connection, a strengthening scheme using steel channel sections was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号