首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The cracking characteristics of fiber-reinforced polymer (FRP) strengthened reinforced concrete (RC) beams in both the short- and long-term is addressed in this paper. First, an empirical equation based on regression analysis of test results obtained from 36 beams was derived for the evaluation of crack widths in FRP-strengthened RC beams under short-term loading. The equation accounts for the effective concrete area in tension, steel stress, proximity of tensile longitudinal reinforcement, and primary crack height. Next, the long-term crack widths of glass FRP-strengthened RC beams under sustained loads were studied. Beams strengthened with glass FRP laminates showed improved cracking characteristics with smaller crack widths compared to conventional RC beams. Based on the investigation, two empirical equations are presented to compute the long-term crack widths in FRP-strengthened beams.  相似文献   

2.
Although there is a large amount of experimental data available on the fiber-reinforced polymer (FRP) strengthening of concrete structures, a full understanding of the various debonding phenomena is somewhat lacking. As a contribution to fill this need, two-dimensional and three-dimensional (3D) nonlinear displacement-controlled finite-element (FE) models are developed to investigate the flexural and FRP/concrete interfacial responses of FRP-strengthened reinforced concrete beams. Interface elements are used to simulate the FRP/concrete interfacial behavior before and after cracking. The analysis is carried out using two different relations for the interface; namely, nonlinear and bilinear bond–slip laws. The results predicted using these two laws are compared to those based on the full-bond assumption. The FE models are capable of simulating the various failure modes, including debonding of the FRP, either at the plate end or at intermediate cracks. The 3D model is created to accommodate cases of FRP-strengthened reinforced concrete beams utilizing FRP anchorage systems. In addition, the models successfully represent the actual interfacial behavior at the vicinities of cracks including the stress/slip concentrations and fluctuations. Results are presented in terms of the ultimate load carrying capacities, failure modes and deformational characteristics. Special emphasis is placed on the FRP/concrete interfacial behavior and cracking of the concrete. The numerical results are compared to available experimental data for 25 specimens categorized in six series, and they show a very good agreement.  相似文献   

3.
Fiber-reinforced polymer (FRP) retrofit systems for concrete structural members such as beams, columns, slabs, and bridge decks have become increasingly popular as a result of extensive studies on short-term debonding behavior. Nevertheless, long-term performance and durability issues regarding debonding behavior in such strengthening systems still remain largely uncertain and unanswered. Because of its composite nature, the effectiveness of the strengthening system depends on the properties of the interfaces between the three constituent materials; namely, concrete, epoxy, and FRP. Certain factors, including those related to environmental exposures, can cause degradation of the interface properties during service life. This is particularly critical when predicting service life and planning maintenance of FRP-strengthened concrete structures. In this study, effect of moisture on an FRP-concrete bond system is characterized by means of the tri-layer fracture toughness, which can be obtained experimentally from peel and shear fracture tests. Fracture specimens were conditioned under various durations and numbers of wet-dry cycles at room temperature and 50°C. An irreversible weakening in bond strength was observed in fracture specimens under moisture cyclic condition. A conceptual model is developed based on the experimental results of the fracture specimens under variable cyclic moisture conditions for the bond strength prediction of the FRP-concrete bond system. A numerical study of a precracked FRP-strengthened reinforced concrete beam is then performed to show potential application of the proposed predictive model.  相似文献   

4.
In this study, numerical models of fiber-reinforced polymer (FRP)-strengthened beams were developed using nonlinear fracture mechanics for the modeling of the concrete-FRP (longitudinal and U-wrap) interfaces. Mode 1, Mode 2, and mixed-mode interfacial behaviors were considered. Results from the finite-element models were compared with experimental tests of large-scale strengthened beams using FRP U-wraps as anchors. The numerical program assessed the effect of the interfacial modeling in the global and local responses. A parametric study was conducted to determine the effect of additional longitudinal FRP sheets in strengthened beams with and without FRP U-wraps. Results from this study indicate that the use of a mixed-mode concrete-FRP interface is a robust numerical approach for the prediction of the global and local responses of large-scale FRP-strengthened beams. The parametric study shows that the use of FRP U-wraps could improve the strength and ductility of the FRP-strengthened beams by changing their failure mode and deflection response. Appropriate modeling of the concrete-FRP interfaces is needed to successfully predict these effects.  相似文献   

5.
The behavior of fiber reinforced polymer (FRP) strengthened reinforced concrete beams subjected to torsional loads has not been well understood compared to other loads. Interaction of different components of concrete, steel, and FRP in addition to the complex compatibility issues associated with torsional deformations have made it difficult to provide an accurate analytical solution. In this paper an analytical method is introduced for evaluation of the torsional capacity of FRP strengthened RC beams. In this method, the interaction of different components is allowed by fulfilling equilibrium and compatibility conditions throughout the loading regime while the ultimate torque of the beam is calculated similarly to the well-known compression field theory. It is shown that the method is capable of predicting the ultimate torque of FRP-strengthened RC beams reasonably accurately.  相似文献   

6.
Rehabilitation of existing structures with carbon fiber reinforced polymers (CFRP) has been growing in popularity because they offer resistance to corrosion and a high stiffness-to-weight ratio. This paper presents the flexural strengthening of seven reinforced concrete (RC) beams with two FRP systems. Two beams were maintained as unstrengthened control samples. Three of the RC beams were strengthened with CFRP fabrics, whereas the remaining two were strengthened using FRP precured laminates. Glass fiber anchor spikes were applied in one of the CFRP fabric strengthened beams. One of the FRP precured laminate strengthened beams was bonded with epoxy adhesive and the other one was attached by using mechanical fasteners. Five of the beams were tested under fatigue loading for two million cycles. All of the beams survived fatigue testing. The results showed that use of anchor spikes in fabric strengthening increase ultimate strength, and mechanical fasteners can be an alternative to epoxy bonded precured laminate systems.  相似文献   

7.
Due to increasing popularity of using fiber-reinforced polymer (FRP) for external strengthening of concrete structures, an urgent demand for understanding the structural behavior of FRP-strengthened structures has been emerging. Unlike conventional reinforced concrete (RC) structures, FRP-strengthened members can exhibit additional flexural capacity in the postyielding stage. This makes RC models for predicting deflection inapplicable in case of FRP-strengthened structures. Therefore, some models have been explicitly developed for evaluating deflection of the strengthened structures. However, most existing models are empirically based, verified with limited experimental results, and require in some cases sophisticated calculation procedures. Accordingly, there is still a demand for a rational and more convenient model for predicting deflection of FRP-strengthened beams. In the current paper, Bischoff’s model, originally proposed for RC and FRP reinforced structures, was extended. Consequently, the developed model is applicable to FRP-strengthened concrete beams besides its validity to both RC and FRP reinforced beams. Validation of the model with some available test data confirmed its accuracy.  相似文献   

8.
It has been demonstrated, through laboratory investigations and various field projects, that the external bonding of fiber- reinforced polymer (FRP) laminates is an effective technique for the structural enhancement of reinforced concrete slabs. In such applications, failure is generally governed by debonding of the FRP laminate. Nevertheless, numerical simulations to date of FRP-strengthened slabs have usually been based on the assumption of full bond between the concrete and FRP. In this study, the interfacial behavior between the FRP laminates and the concrete substrate is accounted for by introducing appropriate bond-slip models for the interface in a nonlinear finite-element analysis of FRP-strengthened two-way slabs. The numerical model is capable of simulating slabs strengthened in shear or in flexure; it can be applied to arbitrary FRP configurations, and can also accommodate both passive as well as prestressed FRP strengthening schemes. Results are presented in terms of load-deflection relationships, ultimate load capacities, failure modes, and interfacial slip and stress distributions. When compared to test results reported in the literature, the analysis is shown to lead to excellent predictions in that, for the entire set of FRP-strengthened specimens considered, the average of the numerical-to-experimental load capacity ratios is 0.966, with a standard deviation of 0.066. Furthermore, in all cases when FRP debonding was observed experimentally, the analysis correctly predicted the mode of failure.  相似文献   

9.
This paper reports on the fourth phase of a multiphase study undertaken at the American University of Beirut (AUB) to examine the effect of fiber-reinforced polymer (FRP) sheets in confining bond-critical regions in reinforced concrete beams. Results of the first three phases showed that glass- and carbon-fiber-reinforced polymer (GFRP and CFRP) sheets were effective in increasing the bond strength and improving the ductility of the mode of failure of tension lap splices in high-strength concrete (HSC) and normal-strength concrete (NSC) beams. The main objective of the fourth phase of the AUB study was to assess the effect of CFRP sheets in improving the serviceability and ultimate response of beam anchorage specimens. The added experimental data and the improved knowledge of the bond behavior of FRP confined concrete members will encourage the use of FRP technology to strengthen and retrofit bond anchorage zones. Ten beam anchorage specimens were tested in positive bending in two series. The variables were bar size, anchorage length, and concrete strength. For each bar size, anchorage length, and concrete strength, two companion specimens—identical except for whether the anchorage zone was wrapped with FRP sheets or not wrapped—were tested. The test results demonstrated that CFRP sheets were effective in enhancing the bond strength and ductility of anchorage zones in beam anchorage specimens where splitting failures were imminent.  相似文献   

10.
This paper presents the development of a numerical model for evaluating the performance of fiber-reinforced polymer (FRP)-strengthened RC beams under fire conditions. The model is based on a macroscopic finite-element approach and utilizes moment-curvature relationships to trace the response of insulated FRP-strengthened RC beams from linear elastic stage to collapse under any given fire exposure and loading scenarios. In the analysis, high temperature properties of constitutive materials, load and restraint conditions, material and geometric nonlinearity are accounted for, and a realistic failure criterion is applied to evaluate the failure of the beams. The model is validated against fire test data on FRP-strengthened RC beams and is applied to study the effect of FRP-strengthening, insulation scheme, and failure criterion on the fire response of FRP-strengthened RC beams. Results from the analysis indicate that FRP-strengthened RC beams should be protected with supplemental fire insulation to satisfy fire resistance requirements. A case study is presented to illustrate the application of the model for optimizing the fire insulation scheme to achieve required fire resistance in FRP-strengthened concrete beams.  相似文献   

11.
This paper presents the results of an experimental investigation into the behavior of slender steel columns strengthened using high-modulus (313?GPa), carbon fiber-reinforced polymer (CFRP) plates. Eighteen slender hollow structural section square column specimens, 44×44×3.2?mm, were concentrically loaded to failure. The effectiveness of CFRP was evaluated for different slenderness ratios (kL/r), namely, 46, 70, and 93. The maximum increases in ultimate load ranged from 6 to 71% and axial stiffness ranged from 10 to 17%, respectively, depending on kL/r. As kL/r reduced, the effectiveness of CFRP plates also reduced, and failure mode changed from CFRP plate crushing after occurrence of overall buckling, to debonding prior to, or just at, buckling. A simplified analytical model is proposed to predict the ultimate axial load of FRP-strengthened slender steel columns, based on the ANSI/AISC 360-05 provisions, which were modified to account for the transformed section properties and a failure criteria of FRP derived from the experimental results. It was shown that for a given FRP reinforcement ratio, there is a critical kL/r at the low end, below which FRP may not enhance the strength of the column.  相似文献   

12.
This paper presents the recent progress and achievement in the application of fiber-reinforced polymers (FRP) on strengthening reinforced/prestressed concrete beams subjected to fatigue loading. Although the performance of FRP-strengthened structures under monotonic loading has been intensively investigated, fatigue behavior is relatively less known to date. This paper summarizes most of the currently available literature, including the codes and design manuals, on reinforced/prestressed concrete beams externally strengthened with FRP. The review focuses specifically on the fatigue life as a function of the applied load range, bond behavior of externally bonded FRP, damage accumulation, crack propagation, size effects, residual strength, and failure modes. Research needs including considerations for design guidelines are presented.  相似文献   

13.
A commonly observed failure mode in laboratory tests involving surface bonded fiber-reinforced polymer (FRP) laminates or near-surface-mounted (NSM) bars is premature delamination, that is, the separation of the FRP from the substrate well before the FRP reaches its ultimate strain capacity. To delay the onset of delamination and to ensure that the NSM FRP reinforcement continues to contribute to member strength after partial delamination, a new self-anchored carbon fiber-reinforced polymer (CFRP) bar was developed and tested for this investigation. This bar is made with a series of monolithic spikes that can be anchored deep inside the concrete. In addition to cutting grooves into the concrete cover for the placement of the primary reinforcing bar, holes are drilled deep into the concrete to insert the spikes. To test the performance of this bar, six large, simply supported, reinforced, concrete beams were retrofitted with NSM bars and tested in four-point bending. Two beams were strengthened with NSM bars without anchors or spikes but were otherwise similar to the self-anchored bar and served as control specimens (Series?B1). Two beams were strengthened in flexure with the new self-anchored NSM bars (Series?B2), and the remaining two beams (Series?B3) were strengthened in flexure and shear by using the self-anchored NSM bars as partial shear reinforcement. The effect of the proposed strengthening system on the beams’ strength, failure mode, deformability, and ductility are discussed on the basis of the experimental results. The anchors delayed delamination and enabled the NSM bar to experience at least a 77% higher strain at failure than the companion bar without anchors. The anchors also increased beam displacement ductility and energy ductility at a 20% strength degradation by at least 34% and 42%, respectively.  相似文献   

14.
Structural repair and strengthening have long been dynamic and challenging activities in construction work. One of the most commonly used methods for such repairs is the application of fiber-reinforced polymer (FRP) sheets to strengthen RC or even steel structure members. A major issue of concern in flexural strengthening of RC beams with FRP laminates is the debonding of the concrete substrate, which leads to premature failure of the structural member thus strengthened. One reason for this premature rupture may be the lack of proper preparation of the concrete surface in contact with the FRP sheet. Surface preparation is typically associated with such constraints as adverse environmental impacts, economic losses due to stoppage of activities, repair costs, or even inaccessibility of the member(s) to be strengthened. This study aims to investigate surface preparation for application of FRP sheets in an attempt to develop substitute methods for conventional surface preparation methods. The experimental specimens used for the purposes of this study included a minimum of 100 prism specimens of dimensions 100×100×500?mm subjected to four-point flexural loading. The specimens were divided into the two control and experimental groups. The control group lacked FRP sheets, while the experimental one had FRP sheets tested for their ultimate failure strength as a result of both surface preparation and transverse, longitudinal, and diagonal grooves as substitutes for surface preparation. The results indicated that surface preparation prior to bonding of FRP sheets increased ultimate rupture strength. It was also found that the substitute preparation methods greatly compensated for the lack of conventional surface preparation such that they changed, in some cases, the ultimate failure behavior of the member.  相似文献   

15.
Reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer (FRP) fully wrapped around the member usually fail due to rupture of FRP, commonly preceded by gradual debonding of the FRP from the beam sides. To gain a better understanding of the shear resistance mechanism of such beams, particularly the interaction between the FRP, concrete, and internal steel stirrups, nine beams were tested in the present study: three as control specimens, three with bonded FRP full wraps, and three with FRP full wraps left unbonded to the beam sides. The use of unbonded wraps was aimed at a reliable estimation of the FRP contribution to shear resistance of the beam and how bonding affects this contribution. The test results show that the unbonded FRP wraps have a slightly higher shear strength contribution than the bonded FRP wraps, and that for both types of FRP wraps, the strain distributions along the critical shear crack are close to parabolic at the ultimate state. FRP rupture of the strengthened beams occurred at a value of maximum FRP strain considerably lower than the rupture strain found from tensile tests of flat coupons, which may be attributed to the effects of the dynamic debonding process and deformation of the FRP wraps due to the relative movements between the two sides of the critical shear crack. Test results also suggest that while the internal steel stirrups are fully used at beam shear failure by FRP rupture, the contribution of the concrete to the shear capacity may be adversely affected at high values of tensile strain in FRP wraps.  相似文献   

16.
Continuous concrete beams are structural elements commonly used in structures that might be exposed to extreme weather conditions and the application of deicing salts, such as bridge overpasses and parking garages. In such structures, reinforcing continuous concrete beams with the noncorrodible fiber-reinforced polymer (FRP) bars is beneficial to avoid steel corrosion. However, the linear-elastic behavior of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. A total of seven full-scale continuous concrete beams were tested to failure. Six beams were reinforced with glass fiber-reinforced polymer (GFRP) longitudinal bars, whereas one was reinforced with steel as control. The specimens have rectangular cross section of 200×300??mm and are continuous over two spans of 2,800?mm each. Both steel and GFRP stirrups were used as transverse reinforcement. The material, spacing, and amount of transverse reinforcement were the primary investigated parameters in this study. In addition, the experimental results were compared with the code equations to calculate the ultimate capacity. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible and is improved by increasing the amount of transverse reinforcement. Also, beams reinforced with GFRP stirrups illustrated similar performance compared with their steel-reinforced counterparts.  相似文献   

17.
Substantial research has been conducted on the shear strengthening of reinforced concrete (RC) beams with bonded fiber reinforced polymer (FRP) strips. The beams may be strengthened in various ways: complete FRP wraps covering the whole cross section (i.e., complete wrapping), FRP U jackets covering the two sides and the tension face (i.e., U jacketing), and FRP strips bonded to the sides only (i.e., side bonding). Shear failure of such strengthened beams is generally in one of two modes: FRP rupture and debonding. The former mode governs in almost all beams with complete FRP wraps and some beams with U jackets, while the latter mode governs in all beams with side strips and U jackets. In RC beams strengthened with complete wraps, referred to as FRP wrapped beams, the shear failure process usually starts with the debonding of FRP from the sides of the beam near the critical shear crack, but ultimate failure is by rupture of the FRP. Most previous research has been concerned with the ultimate failure of FRP wrapped beams when FRP ruptures. However, debonding of FRP from the sides is at least a serviceability limit state and may also be taken as the ultimate limit state. This paper presents an experimental study on this debonding failure state in which a total of 18 beams were tested. The paper focuses on the distribution of strains in the FRP strips intersected by the critical shear crack, and the shear capacity at debonding. A simple model is proposed to predict the contribution of FRP to the shear capacity of the beam at the complete debonding of the critical FRP strip.  相似文献   

18.
This paper presents the results of an experimental and analytical study of the fatigue performance of corroded reinforced concrete (RC) beams repaired with fiber-reinforced polymer (FRP) sheets. Ten RC beam specimens (152×254×3,200?mm) were constructed. One specimen was neither strengthened nor corroded to serve as a reference; three specimens were corroded and not repaired; another three specimens were corroded and repaired with U-shaped glass FRP sheets that wrapped the cross section of the specimen; and the remaining three specimens were corroded and repaired with U-shaped glass FRP sheets for wrapping and carbon-fiber-reinforced polymer (CFRP) sheets for flexural strengthening. The FRP sheets were applied after the main reinforcing bars were corroded to an average mass loss of 5.5%. Following FRP repair, some specimens were tested immediately to failure, while the other repaired specimens were subjected to further corrosion before being tested to failure to investigate their postrepair (long-term) performance. Reinforcement steel pitting due to corrosion reduced the fatigue life significantly. The FRP wrapping had no significant effect on the fatigue performance, while using CFRP sheets for flexural strengthening enhanced the fatigue performance significantly. The fatigue results were compared to smooth specimen fatigue data to estimate an equivalent fatigue notch factor for the main reinforcing bars of the tested specimens.  相似文献   

19.
The paper aims to contribute to a better understanding and modeling of the shear behavior of reinforced-concrete (RC) beams strengthened with carbon fiber reinforced polymer (FRP) sheets. The study is based on an experimental program carried out on 11 beams with and without transverse steel reinforcement, and with different amounts of FRP shear strengthening. The test results provide some new insights into the complex failure mechanisms that characterize the ultimate shear capacity of RC members with transverse steel reinforcement and FRP sheets. After the discussion of the above topics, a new upper bound of the shear strength is introduced. It should be capable of taking into account how the cracking pattern in the web failing under shear is modified by the presence of FRP sheets, and how such a modified cracking pattern actually modifies the anchorage conditions of the sheets and their effective contribution to the ultimate shear strength of the beams.  相似文献   

20.
The behavior of seven one-half scale masonry specimens before and after retrofitting using fiber-reinforced polymer (FRP) is investigated. Four walls were built using one-half scale hollow clay masonry units and weak mortar to simulate walls built in central Europe in the mid-20th century. Three walls were first tested as unreinforced masonry walls; then, the seismically damaged specimens were retrofitted using FRPs. The fourth wall was directly upgraded after construction using FRP. Each specimen was retrofitted on the entire surface of a single side. All the specimens were tested under constant gravity load and incrementally increasing in-plane loading cycles. The tested specimens had two effective moment/shear ratio, namely, 0.5 and 0.7. The key parameter was the amount of FRP axial rigidity, which is defined as the amount of FRP reinforcement ratio times its E modulus. The single-side retrofitting/upgrading significantly improved the lateral strength, stiffness, and energy dissipation of the test specimens. The increase in the lateral strength was proportional to the amount of FRP axial rigidity. However, using high amount of FRP axial rigidity led to very brittle failure. Finally, simple existing analytical models estimated the ultimate lateral strengths of the test specimens reasonably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号