首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recently developed accurate procedure termed as the consistent procedure (CP) for evaluation of creep and shrinkage behavior in reinforced concrete (RC) frames is elaborate and requires large computational effort. An approximate procedure (AP) that has been available and widely used is simple and requires much less computational effort but can be erroneous. The feasibility of using the neural network model to simulate the inelastic deflections of CP from the results of AP for a class of RC frames is investigated. This model would enable rapid estimation of inelastic deflections of CP and would be useful at the planning stage. For this purpose, a ratio η of inelastic deflections of CP, to corresponding deflections of AP, designated as inelastic deflection ratio is defined as the output parameter. The sensitivity of η with the probable structural parameters in the practical range of values is studied and governing input parameters identified. The training is carried out for a practical range of the governing structural parameters. Trained network is validated for a number of example buildings.  相似文献   

2.
This paper presents a method of calculation of creep and shrinkage effects for composite beams. It is particularly applicable to Preflex and Flexstress beams, which are composed of a steel I-girder with the bottom flange encased by concrete. The concrete is prestressed by predeflection of the steel beam and the subsequent release after hardening of the concrete flange or by means of prestressing cables. The presented approach using concrete age-adjusted modular ratios allows the calculation of time-dependent stresses in the concrete flange due to creep and shrinkage, with sufficient accuracy for practical applications and without carrying out cumbersome numerical computations. The results can be extended directly to the analysis of ordinary steel–concrete composite beams. The main goal of the present paper is the calibration of the parameters which must be introduced to simplify the equations describing the system. This calibration is discussed and its sensitivity to some calculation inputs is presented. The conclusions are very encouraging and the simplified approach seems to agree very well with the results of the numerical approach.  相似文献   

3.
In this paper a solution to the bending problem of reinforced concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting in-plane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists of isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and in-plane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative to the time of the casting and the time of the loading of the plate and the beams is taken into account. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method. The adopted model, compared with those ignoring the in-plane forces and deformations, describes better the actual response of the plate–beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates. The resulting deflections are considerably smaller than those obtained by other models.  相似文献   

4.
An innovative self-shoring staged construction method was developed to build the world’s longest reinforced composite concrete arch bridge across the Yangtze River at Wanxian, in Chongqing, China. The method uses a steel tube truss frame constructed by the conventional cantilever launching technique. This steel frame with concrete-filled tubes performs the dual role of arch falsework and arch main reinforcement for the final reinforced concrete arch bridge. An optimized schedule for concrete placement was proposed to control the stresses, deflections, and stability of the arch rib during construction. The time dependent effects of concrete, the nonlinear stress-strain relationship of steel and concrete, as well as the geometric nonlinearility were considered. Control information at various stages of construction can be provided using the model developed. A program was developed to conduct parametric studies for selection of the final construction scheme and to direct the construction progress by monitoring and comparing actual and predicted stress and deflection.  相似文献   

5.
Energy dissipation bearing (EDB) is a conventional steel bridge bearing in connection with well designed mild steel dampers. Seismic performance test was undertaken for both damper units and a prototype bearing, and the results show very stable and high dissipation characteristics. In describing the hysteretic behavior of EDBs, the Wen model is proved to be more reasonable, and the corresponding model parameters are also proposed according to the test results. EDBs have been applied in the seismic control of a long span bridge, the Nanjing Jia River Bridge, for the first time, in both the longitudinal and transverse directions. Sensitivity studies were conducted to investigate the effectiveness and to determine the optimum parameters and distribution of the EDBs through nonlinear time-history analysis. The results show that EDBs achieve a very high effectiveness in seismic control, in both the longitudinal and transverse directions. Compared with other damping devices, they can provide a simple but valid seismic control solution, with low maintenance requirements, especially in the transverse direction.  相似文献   

6.
Creep and shrinkage in concrete deck of steel-concrete composite bridges can result in significant redistribution and consequent increase in bending moments at continuity supports and also increase in deflections. Studies are presented for the control of creep and shrinkage effects in steel-concrete composite bridges with precast concrete decks. A hybrid procedure recently developed by the authors has been used for carrying out the studies. The procedure accounts for creep, shrinkage and progressive cracking in concrete decks. Single span, three span and five span bridges have been analyzed for different thicknesses of concrete decks and grades of concrete. Both the shored and unshored constructions have been considered. It is shown that, for both constructions, the increase in bending moments and midspan deflections can be controlled to a significant degree, without putting constraints on design parameters, by simply delaying the time of mobilization of composite action between the precast concrete deck panels and the steel section. It is also observed that though the percentage change in bending moments due to creep and shrinkage is similar for shored and unshored constructions, the percentage change in midspan deflection is significantly higher for shored construction.  相似文献   

7.
Aerostatic stability of super long-span bridges is a much concerned issue during the design stage. Typical aerostatic instability is the so-called torsional divergence which may lead to abrupt structural failure. The iterative static-based FEM, which generally entails the assumption of smooth oncoming flow, has been widely used to evaluate the aerostatic stability of the bridge concerned. However, the wind in atmospheric boundary layer is naturally turbulent and the effect of turbulence on bridge torsional divergence should be therefore considered, and that is the main concern of the present study. To take into account the effects of turbulence on torsional divergence, a dynamic-based time domain finite-element (FE) procedure for predicting bridge aerostatic stability is introduced first. Then the quasi-steady wind loads expressions are presented and discussed, into which the aerodynamic torsional stiffness, which is indispensable for the evaluation of aerostatic stability, has been demonstrated to be incorporated indirectly by a frequency-domain-based approach. Finally, the aerostatic performances of the longest suspension bridge in China are investigated, of which the torsional divergence is the primary concern. Numerical results show that the torsional divergence pattern in turbulent flow differs considerably from that in smooth flow. The primary difference is, while the torsional instability in smooth flow manifests as an abrupt mounting up of the twist deformation of the main girder with the increasing of the wind velocity, that in turbulent flow manifests as an unstable stochastic vibration with large peak values. Another difference is that the wind velocity for divergence in turbulent flow is obviously lower than that in smooth wind and there does not present an obvious wind velocity threshold for divergence, which is distinguished from the torsional divergence in smooth flow characterized by a clear threshold. Based on the presented time domain FE analysis procedure, the influence of turbulence intensity and gusts spatial correlation upon torsional divergence is also investigated and shown to play an important role on the aerostatic stability.  相似文献   

8.
Bridge performance undergoes time-varying changes when exposed to aggressive environments. While much work has been done on bridge reliability under corrosion, little is known about the effects of creep and shrinkage on the reliability of concrete bridges. In this paper, the CEB-FIP model for creep and shrinkage is applied by using finite-element (FE) analysis in conjunction with probabilistic considerations. Verification is made by comparing the analytical findings with existing test data. More specifically, a time-dependent reliability assessment is made for a composite prestressed concrete (PSC) box-girder bridge exposed to a chloride environment. This realized via an advanced probabilistic FE method. The postcracking behavior of the thin-walled box girder is described using composite degenerated shell elements, and importance sampling is used to improve the efficiency of the reliability analyses. It is shown that concrete creep and shrinkage dominate during the early stages of bridge structure deterioration. This is accompanied by a decrease in reliability owing to the combined action of creep, shrinkage, and corrosion. The reliability indexes for the serviceability and the tendon yielding limit state fall below the target levels prior to the expected service life. Therefore, early maintenance and/or repair measures are required.  相似文献   

9.
Rehabilitation of the existing bridges is one of the most pressing needs in maintenance of the transportation infrastructure. As an example, more than 2,000 bridges in Kansas alone need to be replaced during the next decade. The majority of these bridges have spans of 30 m (100 ft) or less, and shallow profiles. The inverted-T (IT) bridge system has gained increasing popularity in recent years due to its lower weight and relatively larger span-to-depth ratio compared to the prestressed I-girder bridges. However, there are some limitations in replacing the existing cast in place (CIP) bridges with IT system. Implementation of posttensioning, which is the focus of this paper, is a promising solution for these limitations. This leads to a higher span-to-depth ratio and reduces potential transverse cracks in the CIP deck which is a major concern for corrosion of the reinforcement. An analytical research was conducted to identify the major parameters influencing the performance of a posttensioned IT bridge system. This was followed by a parametric study to explore the scope of these parameters and specify the design limits in terms of posttensioning stages, timing scenarios, and posttensioning forces. Concrete strength and different methods for estimating time-dependent restraining moments were addressed in this parametric study.  相似文献   

10.
Slender long-span bridges exhibit unique features which are not present in short and medium-span bridges such as higher traffic volume, simultaneous presence of multiple vehicles, and sensitivity to wind load. For typical buffeting studies of long-span bridges under wind turbulence, no traffic load was typically considered simultaneously with wind. Recent bridge/vehicle/wind interaction studies highlighted the importance of predicting the bridge dynamic behavior by considering the bridge, the actual traffic load, and wind as a whole coupled system. Existent studies of bridge/vehicle/wind interaction analysis, however, considered only one or several vehicles distributed in an assumed (usually uniform) pattern on the bridge. For long-span bridges which have a high probability of the presence of multiple vehicles including several heavy trucks at a time, such an assumption differs significantly from reality. A new “semideterministic” bridge dynamic analytical model is proposed which considers dynamic interactions between the bridge, wind, and stochastic “real” traffic by integrating the equivalent dynamic wheel load (EDWL) approach and the cellular automaton (CA) traffic flow simulation. As a result of adopting the new analytical model, the long-span bridge dynamic behavior can be statistically predicted with a more realistic and adaptive consideration of combined loads of traffic and wind. A prototype slender cable-stayed bridge is numerically studied with the proposed model. In addition to slender long-span bridges which are sensitive to wind, the proposed model also offers a general approach for other conventional long-span bridges as well as roadway pavements to achieve a more realistic understanding of the structural performance under probabilistic traffic and dynamic interactions.  相似文献   

11.
The response surface Monte Carlo method (RSMCM) is proposed for reliability analysis of aerostatic response and aerostatic stability for different types of long-span bridges, in which the nonlinear effects due to geometric nonlinearity and deformation-dependent aerostatic loads are taken into consideration. The geometric parameters, the material parameters, and the aerostatic coefficients of the bridge girder are regarded as random variables in the proposed method. RSMCM has higher accuracy in comparison with the traditional response surface method and requires much less computational cost than the conventional Monte Carlo method. The proposed method is applied to reliability analysis of aerostatic response and aerostatic stability of the Hong Kong Ting Kau Bridge, and reasonable results illustrating effectiveness of the method are obtained.  相似文献   

12.
13.
The increased failure potential of aging U.S. highway bridges and their susceptibility to damage during extreme events necessitates the development of efficient reliability assessment tools to prioritize maintenance and rehabilitation interventions. Reliability communication tools become even more important when considering complex phenomena such as soil liquefaction under seismic hazards. Currently, two approaches are widely used for bridge reliability estimation under soil failure conditions via fragility curves: liquefaction multipliers and full-scale two- or three-dimensional bridge-soil-foundation models. This paper offers a computationally economical yet adequate approach that links nonlinear finite-element models of a three-dimensional bridge system with a two-dimensional soil domain and a one-dimensional set of p-y springs into a coupled bridge-soil-foundation (CBSF) system. A multispan continuous steel girder bridge typical of the central and eastern United States along with heterogeneous liquefiable soil profiles is used within a statistical sampling scheme to illustrate the effects of soil failure and uncertainty propagation on the fragility of CBSF system components. In general, the fragility of rocker bearings, piles, embankment soil, and the probability of unseating increases with liquefaction, while that of commonly monitored components, such as columns, depends on the type of soil overlying the liquefiable sands. This component response dependence on soil failure supports the use of reliability assessment frameworks that are efficient for regional applications by relying on simplified but accepted geotechnical methods to capture complex soil liquefaction effects.  相似文献   

14.
This paper presents concrete temperature data through the depth of a segmental box girder bridge. These data were collected continuously over a 2? year time period. The maximum recorded positive and negative thermal differentials are reported and compared to current design recommendations. The relationships between measured temperatures and ambient climatic conditions as recorded by the National Weather Service were studied and findings are presented. Equations to predict positive temperature differentials are presented and the predictions are compared to measured values. Finally, the results of two one-day studies of the response of the bridge to positive thermal gradients are presented.  相似文献   

15.
16.
Seismic Fragility of Continuous Steel Highway Bridges in New York State   总被引:2,自引:0,他引:2  
This paper presents the results of an analytical seismic fragility analysis of a typical steel highway bridge in New York State. The structural type and topological layout of this multispan I-girder bridge have been identified to be most typical of continuous bridges in New York State. The structural details of the bridge are designed as per New York State bridge design guidelines. Uncertainties associated with the estimation of material strength, bridge mass, friction coefficient of expansion bearings, and expansion-joint gap size are considered. To account for the uncertainties related to the bridge structural properties and earthquake characteristics, ten statistical bridge samples are established using the Latin Hypercube sampling and restricted pairing approach, and 100 ground motions are simulated numerically. The uncertainties of capacity and demand are estimated simultaneously by using the ratios of demands to capacities at different limit states to construct seismic fragility curves as a function of peak ground acceleration and fragility surfaces as a function of moment magnitude and epicentral distance for individual components using nonlinear and multivariate regressions. It has been observed that nonlinear and multivariate regressions show better fit to bridge response data than linear regression conventionally used. To account for seismic risk from multiple failure modes, second-order reliability yields narrower bounds than the commonly used first-order reliability method. The fragility curves and surfaces obtained from this analysis demonstrate that bridges in New York State have reasonably low likelihood of collapse during expected earthquakes.  相似文献   

17.
This paper presents issues in the design concept, analysis, and test results of a harp-shaped single span cable-stayed bridge, Hongshan Bridge, located in Changsha, Hunan Province, China. The bridge has a 206 m span, with a pylon inclined at 58° from the horizontal and 13 pairs of parallel cable stays without a back?stay. This paper discusses the design approach for the main components of the bridge. Emphasis will be put on the following three aspects. First, the weight of the pylon and all dead loads of the main girder in addition to part of the live loads must be in a balanced condition. Second, the main girder should be an orthotropic steel-concrete composite box girder because of the superior safety and weight reduction of this type of structure. Third, the cable?stays should be anchored at the neutral axis of the pylon to prevent the development of high secondary moments caused by other anchor approaches. Furthermore, based on results from tests carried out on three models, namely, scaled full model tests in a scale of 1:30, scaled section model tests in a scale of 1:6, and wind tunnel tests, the following four key issues were studied: (1) the local stability of orthotropic steel-concrete composite box girder subjected to combined bending and axial loads; (2) the characteristics under loads of 13-m-long cantilever beams; (3) the safety of the bridge under some other dangerous conditions; and (4) the characteristics of wind resistance and wind tunnel testing.  相似文献   

18.
19.
The primary focus of this paper is to develop an understanding of temperature changes introduced by hydration heat release in the first few hours after casting in the thermal movements and stresses of the concrete deck and girders. Temperature and strain measurements from a simply supported, single-span, steel girder bridge with a composite concrete deck are presented. It is shown that setting occurs during the temperature rise and partial strain compatibility between steel girder and concrete deck is initiated at the end of the concrete temperature rise. Full strain compatibility between concrete deck and steel girder is achieved at the end of the cooling period following the initial temperature rise. The stresses in the steel girder associated with temperature changes are interpreted using an analytical model. It is shown that the concrete deck gains sufficient stiffness at the end of the temperature rise to restrain the movement of the top flange. Concrete deck movement in the period associated with cooling following the initial temperature rise is restrained, which could potentially produce tensile stress in concrete. The magnitude of tensile stress at the end of the cooling period depends upon the difference in the temperatures of the concrete deck and top flange and on the temperature gradient in the steel girder at the end of the heating period.  相似文献   

20.
A field load test is an essential way to understand the behavior and fundamental characteristics of newly constructed bridges before they are allowed to go into service. The results of field static load tests and numerical analyses on the Qingzhou cable-stayed bridge (605?m central span length) over the Ming River, in Fuzhou, China are presented in the paper. The general test plan, tasks, and the responses measured are described. The level of test loading is about 80–95% of the code-specified serviceability load. The measured results include the deck profile, deck and tower displacements, and stresses of steel-concrete composite deck. A full three-dimensional finite-element model is developed and calibrated to match the measured elevations of the bridge deck. A good agreement is achieved between the experimental and analytical results. It is demonstrated that the initial equilibrium configuration of the bridge plays an important role in the finite-element calculations. Both experimental and analytical results have shown that the bridge is in the elastic state under the planned test loads, which indicates that the bridge has an adequate load-carrying capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号