首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A technique for strengthening damaged concrete beams using prestressed carbon fiber reinforced polymer (CFRP) sheets was developed at Queen’s University and the Royal Military College of Canada. As part of this study, an anchorage system was developed to directly prestress the CFRP sheets by jacking and reacting against the strengthened concrete beam itself. The feasibility and effectiveness of using bonded prestressed CFRP sheets to strengthen precracked concrete beams at both room (+22°C,+72°F) and low (?28°C,?20°F) temperatures have been investigated experimentally. Materials and prestress changes due to temperature variations that would affect and cause changes in flexural behavior were studied. The strengthened beams showed significant increases in flexural stiffness and ultimate capacity as compared to the control-unstrengthened beams. The flexural behavior of the strengthened beams was not adversely affected by short-term exposure to reduced temperature (?28°C,?20°F). In addition to the experimental investigation, analytical models were developed to predict the overall flexural behavior of the strengthened beams during prestressing of the CFRP sheets and under external loading at both room and low temperatures. The model accurately predicted the flexural beam behavior. Improved serviceability behavior and higher strength were predicted for beams strengthened with the bonded prestressed CFRP sheets.  相似文献   

2.
This paper presents the results of experimental and analytical studies carried out to investigate the flexural behavior of reinforced concrete beams strengthened with end-anchored partially bonded carbon fiber-reinforced polymer (CFRP) strips. A total of six beams, each 2400 mm long, 150 mm wide, and 250 mm deep with a tension steel reinforcement ratio of 1.18%, were tested. One beam was left unstrengthened as the control, another beam was strengthened with a fully bonded CFRP strip, and the remaining four beams were strengthened with partially bonded CFRP strips placed on the tension face of the beam and fixed at both ends using a mechanical anchor. The influence of varying the CFRP unbonded length (250 mm, 750 mm, 2×500 mm, and 1,250 mm) on the beam flexural response was studied. The experimental results revealed that end-anchored partially bonded CFRP strips significantly enhanced the ultimate capacity of the control beam and performed better than the fully bonded strip with no end-anchorage. This observation stresses the importance of end-anchorage in such strengthening schemes, especially considering that the end-anchored partially bonded CFRP strengthened beams showed similar flexural behavior trends. Finally, an inelastic section analysis procedure that takes into consideration the incompatibility of strains was developed to verify the obtained test results. The analysis produced good predictions of the experimental results in terms of the moment-curvature response and showed the effect of CFRP unbonded length on the strain of the internal tension steel.  相似文献   

3.
Four prestressed concrete beams were constructed and tested to investigate the effectiveness of flexural post-strengthening with prestressed carbon fiber-reinforced polymer (CFRP) strips. One of the beams served as a reference beam, another was bonded with an unstressed CFRP strip, and the remaining two specimens were strengthened with prestressed CFRP strips at two prestressing levels. The gradient method was used for the anchorage of the prestressed CFRP strips. Experimental and analytical calculations are compared with the test results. Further, different failure modes are explained. On the basis of this investigation, recommendations for the use of prestressed CFRP strips anchored with the gradient method are given.  相似文献   

4.
This paper presents the flexural behavior of reinforced concrete beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) sheets using nonmetallic anchor systems. The developed nonmetallic anchor systems replace the permanent steel anchorage. Nine doubly reinforced concrete beams are tested with various types of nonmetallic anchor systems such as nonanchored U-wraps, mechanically anchored U-wraps, and CFRP sheet-anchored U-wraps. The flexural behavior of the tested beams, including detailed failure modes of each nonmetallic anchor system, is investigated. The study shows that the developed nonmetallic anchors are more effective in resisting peeling-off cracks compared to the permanent steel anchors and the beams strengthened with the nonmetallic anchors provide comparable load-carrying capacity with respect to the steel anchored control beam.  相似文献   

5.
This research studies the feasibility and effectiveness of a new method of strengthening existing RC T-beams in shear by using mechanically anchored unbonded dry carbon fiber (CF) sheets. This method eliminates the debonding of epoxy-bonded carbon-fiber-reinforced polymer (CFRP) sheets and utilizes the full capacity of dry CF sheets. In this method, dry CF sheets are wrapped around and bonded to two steel rods. Then the rods are anchored to the corners of the web-flange intersection of the T-beam with mechanical bolts. This makes a U-shaped dry CF jacket around the web which increases the shear strength of the T-beam using the privilege of higher tensile strength and modulus of elasticity of dry CF compared to composite CFRP. A total of three RC T-beams with shear span-to-depth ratio of 2.0 were tested under increasing monotonic load till failure. The pilot tests were done as a proof-of-concept of the effectiveness of the proposed method in increasing the shear capacity of the RC T-beams. The first T-beam, which was tested as the control beam, failed in shear. The second beam was strengthened by using a U-shaped CFRP sheet that was externally bonded to the web of the beam in the shear zones. The third beam was strengthened by using anchored U-shaped dry CF sheet. The test results showed that the beam strengthened by the new mechanically anchored dry CF had about 48% increase in shear capacity as compared to the control beam and 16% increase in shear capacity as compared to the beam strengthened by CFRP epoxy-bonding method.  相似文献   

6.
This paper presents the results of an experimental study designed to investigate the viability of using externally bonded carbon-fiber-reinforced polymer (CFRP) laminates to extend the service life of corroded reinforced concrete (RC) beams. A total of 14 beams, 152×254×3,200?mm each, were tested. Three beams were not corroded; two of them were strengthened by CFRP laminates, while one specimen was kept as a virgin. The remaining 11 beams were subjected to different levels of corrosion damage up to a 31% steel mass loss using an impressed current technique. Six of the corroded beams were repaired with CFRP laminates, whereas the remaining five beams were not repaired. Eventually, all specimens were tested to failure under four-point bending. Corrosion of the steel reinforcement significantly reduced the load-carrying capacity of RC beams. At all levels of corrosion damage, CFRP repair increased the ultimate strengths of the corroded beams to levels higher than the strength of the virgin beam but significantly reduced the deflection capacity.  相似文献   

7.
This paper investigates the flexure of prestressed concrete beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) sheets, focusing on ductility and cracking behavior. Structural ductility of a beam strengthened with CFRP sheets is critical, considering the abrupt and brittle failure of CFRP sheets themselves. Cracking may also affect serviceability of a strengthened beam, and may be especially important for durability. Midscale prestressed concrete beams (L = 3.6?m) are constructed and a significant loss of prestress is simulated by reducing the reinforcement ratio to observe the strengthening effects. A nonlinear iterative analytical model, including tension of concrete, is developed and a nonlinear finite-element analysis is conducted to predict the flexural behavior of tested beams. The prestressed CFRP sheets result in less localized damage in the strengthened beam and the level of the prestress in the sheets significantly contributes to the ductility and cracking behavior of the strengthened beams. Consequently, the recommended level of prestress to the CFRP sheets is 20% of the ultimate design strain with adequate anchorages.  相似文献   

8.
Use of carbon fiber reinforced polymers (CFRP) reinforcement for prestressing concrete structures introduces a promising solution for deterioration of concrete structures due to corrosion of steel reinforcements. Due to the low elastic modulus and limited strain at failure of CFRP reinforcement, partial prestressing could be the most appropriate approach to enhance deformability and reduce the cost in comparison to fully prestressed concrete structures. For members reinforced or prestressed with fiber reinforced polymers reinforcements, serviceability requirements may be the governing criteria for the design; therefore, deflection under service loading conditions should be well defined. This paper introduces simplified methods to calculate the deflection of beams prestressed by CFRP reinforcement under short-term and repeated loading. It also examines the applicability of current approaches available to calculate the deflection. Based on an experimental program undertaken at the University of Manitoba, bond factors are introduced to account for tension stiffening of concrete beams prestressed by CFRP. A procedure to determine the location of the centroidal axis of cracked prestressed sections is also proposed. The proposed methods for deflection calculation are calibrated using the results obtained from different experimental programs. Design guidelines are proposed to predict the deflection of beams partially prestressed by CFRP reinforcement.  相似文献   

9.
The results of an analytical and experimental study on the behavior of reinforced concrete T-beams retrofitted with carbon-fiber-reinforced polymer (CFRP) plates are discussed in this paper. CFRP plates were bonded to the underside of the beams with the main objective of increasing the service life load capacity. A test series comprising a prototype beam and six 5-m-long simply supported beams were tested under repeated cyclic and monotonic load conditions to failure. Particular emphasis was given to the development of the CFRP plates and to the behavior of the service and ultimate load ranges. This paper examines variables that have not previously been considered such as the use of staggered plates and the use of plates on beam with curtailed longitudinal steel reinforcement. The effect of diagonal tension cracking is also considered in this study by adapting a simple version of the modified compression field theory into the discrete element method. An important conclusion in this paper is that staggered CFRP plates can be used in lieu of full-length plates when considering flexural strengthening of beams.  相似文献   

10.
This paper presents a study on the flexural behavior of two-way reinforced concrete slabs externally strengthened with prestressed or nonprestressed carbon fiber-reinforced polymer (CFRP) sheets. Four large-scale flat plate slabs (3,000?mm×3,000?mm×90?mm) are tested and a nonlinear three-dimensional finite-element analysis is conducted to predict the flexural behaviors of the tested slabs, including the load-deflection response, strain distribution, crack propagation, and crack mouth opening displacement. An increase in the load-carrying capacity of 25 and 72% is achieved for the slabs strengthened with nonprestressed and prestressed CFRP sheets, respectively, in comparison to the unstrengthened slab. A reduction of the deflections up to 32% in service is noted for the strengthened slabs. The unstrengthened slab shows very ductile behavior, whereas, progressive failure is observed for the strengthened slabs, exhibiting pseudoductility in postpeak behavior. Stress redistribution between the internal and external reinforcement is significant in the slab strengthened with prestressed CFRP sheets.  相似文献   

11.
Retrofitting concrete structures with fiber reinforced polymer (FRP) has today grown to be a widely used method throughout most parts of the world. The main reason for this is that it is possible to obtain a good strengthening effect with a relatively small work effort. It is also possible to carry out strengthening work without changing the appearance or dimensions of the structure. Nevertheless, when strengthening a structure with external FRP, it is often not possible to make full use of the FRP. The reason for this depends mainly on the fact that a strain distribution exists over the section due to dead load or other loads that cannot be removed during strengthening. This implies that steel yielding in the reinforcement may already be occurring in the service limit state or that compressive failure in the concrete is occurring. By prestressing, a higher utilization of the FRP material is made possible. It is extremely important to ensure that, if external prestressing is used, the force is properly transferred to the structure. Most of the research conducted with prestressing carbon fiber reinforced polymer (CFRP) for strengthening has been on surface bonded laminates. However, this paper presents research on prestressed CFRP quadratic rods bonded in sawed grooves in the concrete cover. This method has proven to be an advantageous means of bonding CFRP to concrete, and in comparison to surface bonded laminates, the shear and normal stress between the CFRP and the concrete are more efficiently transferred to the structure. In the presented test, no mechanical device has been used to maintain the prestress during testing, which means that the adhesive must transfer all shear stresses to the concrete. Fifteen beams with a length of 4?m have been tested. The tests show that the prestressed beams exhibited a higher first-crack load as well as a higher steel-yielding load as compared to nonprestressed strengthened beams. The ultimate load at failure was also higher, as compared to nonprestressed beams, but in relation not as large as for the cracking and yielding. In addition, the beams strengthened with prestressed FRP had a smaller midpoint deflection. All strengthened beams failed due to fiber rupture of the FRP.  相似文献   

12.
Shear failure is catastrophic and occurs usually without advance warning; thus it is desirable that the beam fails in flexure rather than in shear. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Externally bonded reinforcement such as carbon-fiber-reinforced polymer (CFRP) provides an excellent solution in these situations. To investigate the shear behavior of RC beams with externally bonded CFRP shear reinforcement, 11 RC beams without steel shear reinforcement were cast at the concrete laboratory of the New Jersey Institute of Technology. After the beams were kept in the curing room for 28?days, carbon-fiber strips and fabrics made by Sika Corp. were applied on both sides of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kips) MTS testing machine. Results of the test demonstrate the feasibility of using an externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of RC beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam; thus, restoring beam shear strength by using CFRP is a highly effective technique. An analysis and design method for shear strengthening of externally bonded CFRP has been proposed.  相似文献   

13.
The results of an experimental and analytical investigation of shear strengthening of reinforced concrete (RC) beams with externally bonded (EB) fiber-reinforced polymer (FRP) strips and sheets are presented, with emphasis on the effect of the strip-width-to-strip-spacing ratio on the contribution of FRP (Vf). In all, 14 tests were performed on 4,520-mm-long T-beams. RC beams strengthened in shear using carbon FRP (CFRP) strips with different width-to-spacing ratios were considered, and their performance was investigated. In addition, these results are compared with those obtained for RC beams strengthened with various numbers of layers of continuous CFRP sheet. Moreover, various existing equations that express the effect of FRP strip width and concrete-member width and that have been proposed based on single or double FRP-to-concrete direct pullout tests are checked for RC beams strengthened in shear with CFRP strips. The objectives of this study are to investigate the following: (1)?the effectiveness of EB discontinuous FRP sheets (FRP strips) compared with that of EB continuous FRP sheets; (2)?the optimum strip-width-to-strip-spacing ratio for FRP (i.e., the optimum FRP rigidity); (3)?the effect of FRP strip location with respect to internal transverse-steel location; (4)?the effect of FRP strip width; and (5)?the effect of internal transverse-steel reinforcement on the CFRP shear contribution.  相似文献   

14.
One promising means of increasing the capacity of existing shear-deficient beams is to strengthen the structure using external prestressed carbon fiber reinforced polymer (CFRP) straps. In this system, layers of CFRP tape are wrapped around a beam to form a strap that acts like a discrete unbonded vertical prestressing tendon. Experiments were undertaken to investigate the influence of the strap spacing, the strap stiffness, the initial strap prestress level and/or any preexisting damage on the strengthened behavior, and mode of failure. An unstrengthened control beam was tested and failed in shear. In contrast, all of the strengthened beams showed a significant increase in their ultimate load capacity with several of the strengthened beams failing in flexure. A number of different failure modes were noted and initial guidelines on the design parameters that influence the propensity for a particular failure mode were developed.  相似文献   

15.
For reinforced concrete beams with the same shear and flexural reinforcements, shear failure is most likely to occur in deep beams rather than in regular beams. Thus, retrofitting of deep beams with shear deficiencies is of great importance. Externally bonded reinforcement such as carbon fiber reinforced polymer (CFRP) provides an excellent solution in these situations. In order to investigate the shear behavior of deep beams with externally bonded CFRP shear reinforcement, 16 deep beams without steel shear reinforcement were cast at the concrete laboratory of New Jersey Institute of Technology. After the beams were kept in the curing room for 28 days, carbon fiber strips and fabrics were applied outside of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kip) MTS testing machine. Results of test demonstrate the feasibility of using externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of deep beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam, thus restoring deep beam shear strength using CFRP is a highly effective technique. An analysis and design method for shear strengthening of deep beams using externally bonded CFRP has also been proposed as well.  相似文献   

16.
In recent years, a tremendous effort has been directed toward understanding and promoting the use of externally bonded fiber-reinforced polymer (FRP) composites to strengthen concrete structures. Despite this research effort, studies on the behavior of beams strengthened with FRP under fatigue loading are relatively few, especially with regard to its shear-strengthening aspect. This study aims to examine the fatigue performance of RC beams strengthened in shear using carbon FRP (CFRP) sheets. It involves six laboratory tests performed on full-size T-beams, where the following parameters are investigated: (1) the FRP ratio and (2) the internal transverse-steel reinforcement ratio. The major finding of this study is that specimens strengthened with one layer of CFRP survived 5 million cycles, some of them with no apparent signs of damage, demonstrating thereby the effectiveness of FRP strengthening systems on extending the fatigue life of structures. Specimens strengthened with two layers of CFRP failed in fatigue well below 5 million cycles. The failure mode observed for these specimens was a combination of crushing of the concrete struts, local debonding of CFRP, and yielding of steel stirrups. This failure may be attributed to the higher load amplitude and also to the greater stiffness of the FRP which may have changed the stress distribution among the different components coming into play. Finally, comparison between the performance of specimens with transverse steel and without seems to indicate that the addition of transverse steel extends the fatigue life of RC beams.  相似文献   

17.
Six prototype one-way RC slabs with openings were strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) systems and subjected to concentrated line loads. The results were compared to those of a solid slab without opening and a slab with an unstrengthened opening. The CFRP system proved to be effective in enhancing the load-carrying capacity and stiffness of RC slabs with an opening, provided that premature failure due to CFRP debonding is excluded. An analytical model based on the modified yield line method is presented, in which four failure modes comprising one orthogonal and three nonorthogonal yield line patterns were considered. The analytical model predicts the load carrying capacity of the strengthened slabs very well. The opening width has a more prominent effect on the load-carrying capacity than does the opening length.  相似文献   

18.
Rehabilitation of existing structures with carbon fiber reinforced polymers (CFRP) has been growing in popularity because they offer resistance to corrosion and a high stiffness-to-weight ratio. This paper presents the flexural strengthening of seven reinforced concrete (RC) beams with two FRP systems. Two beams were maintained as unstrengthened control samples. Three of the RC beams were strengthened with CFRP fabrics, whereas the remaining two were strengthened using FRP precured laminates. Glass fiber anchor spikes were applied in one of the CFRP fabric strengthened beams. One of the FRP precured laminate strengthened beams was bonded with epoxy adhesive and the other one was attached by using mechanical fasteners. Five of the beams were tested under fatigue loading for two million cycles. All of the beams survived fatigue testing. The results showed that use of anchor spikes in fabric strengthening increase ultimate strength, and mechanical fasteners can be an alternative to epoxy bonded precured laminate systems.  相似文献   

19.
This study attempts to develop a semianalytical model for the mechanical behavior of reinforced concrete (RC) beams rehabilitated with externally prestressed carbon fiber-reinforced polymers (CFRP) laminates. The main significance of this study is the model of the process of degradation of RC beams until failure and its recovery through externally prestressed CFRP. Experiments have been carried out to observe the load–deflection behavior of fresh RC beams until the load resistance of the beam is exhausted. The beams have been rehabilitated with external CFRP laminates with varying levels of prestress. The rehabilitated beams have been reloaded until failure. The load–deflection behavior of the fresh and rehabilitated beams has been compared. A model for the load–deflection behavior of the fresh and rehabilitated beam has been proposed. The main import of the model is that it incorporates the effect of confinement of concrete. The model shows very good agreement with the experimental results.  相似文献   

20.
Four large-scale reinforced concrete beams were constructed and tested to investigate the effectiveness of external poststrengthening with prestressed fiber reinforced polymer (FRP) sheets. One of the beams served as a control specimen, another was strengthened with nonprestressed carbon FRP sheets, and the remaining two were strengthened with prestressed carbon FRP sheets. Presented is a method of prestressing multiple layers of the carbon fiber sheets during the application process and the experimental and analytical behavior of the beams under quasi-static loading. Comparisons are made between the control beam, the beam reinforced with nonprestressed carbon FRP sheets, and the beams strengthened with prestressed sheets. Serviceability and ultimate conditions are considered in the theoretical prediction of beam behavior, including the effects of multiple layer prestressing and external loading. The bonding of prestressed FRP sheets to the tensile face of concrete beams improved both the serviceability and the ultimate behavior of the reinforced concrete beams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号