首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以杭州地铁某车站深基坑开挖为工程背景,对该基坑开挖引起的支撑轴力、地表沉降、建筑物沉降以及周边地下管线沉降实测数据进行分析.研究结果表明:基坑开挖初期提高支撑轴力监测频率并加快支撑的布设,是保证基坑安全施工的重要手段;后续支撑的架设会使第一道支撑轴力产生拉力,要防止第一道支撑与围护结构脱开;地表沉降最大点与基坑边有一定距离,沉降曲线多呈盆形;基坑开挖会使邻近建筑物产生不均匀沉降;周边地下管线与地表的沉降大小和测点与基坑的相对位置有关,标准段附近沉降大于端头井段,标准段中部沉降最大,平行于基坑边的管线产生不均匀沉降.  相似文献   

2.
上海地铁M8线某车站基坑开挖变形特征分析   总被引:2,自引:0,他引:2  
基坑变形大小和变化规律不仅关系到基坑本身的安全,也关系到周围建筑物及地下管线的安全.上海轨道交通M8线某车站位于上海市市中心,周围建筑物和管线密集,且基坑紧贴地铁一号线车站,对环境保护要求非常高.根据基坑围护结构监测数据,分析了围护墙体的变形特征,发现基坑在开挖过程中其变形符合时空效应规律,基坑变形大小和速率与基坑暴露时间和每次开挖方量密切相关,在开挖过程中要特别注意支撑架设的及时性和挖土工艺.发现车站标准段与端头井水平变形特征有所差异,端头井最大水平位移相对标准段较小,这与端头井采用满膛加固的原因有关.最后分析了基坑周围建筑物的沉降特征.  相似文献   

3.
上海软土地区某深基坑施工监测分析   总被引:7,自引:0,他引:7  
软土地区深基坑周边往往建筑密集、地下管线众多,环境保护要求较高,必须进行严格的工程设计和施工,最大限度减少基坑施工对周边环境的影响.介绍了上海某深基坑工程的支护设计、施工和监测方案,并对主要监测结果作了详细分析.监测结果表明,基坑开挖引起的围护结构变形及对周边环境的影响具有明显的三维空间效应;围护结构变形、地表沉降、地下管线变形及邻近高架基础沉降主要发生在深层土体开挖阶段,开挖至坑底后,变形逐步趋于稳定;坑外地下水位的变化可反映围护结构的止水效果;本工程设计方案的实施和工程施工过程中的信息化控制技术有效地保护了基坑周边的环境.  相似文献   

4.
通过有限元软件ABAQUS,分别考虑软土地区基坑的不同围护结构和管线的不同下卧层土质等因素,对悬臂式基坑工程中临近的地下管线位移进行了三维有限元模拟分析,结果表明:围护结构刚度和下卧层土质均对临近管线位移有较大影响;距基坑越近,管线变形越大;出现了地表及管线的沉降,但在基坑端角附近有管线上浮现象;基坑端角部以外2/3的基坑开挖深度范围内,管线水平和竖向位移较大,但在1.2倍的基坑开挖深度之外,开挖对管线位移影响较小.  相似文献   

5.
针对上海软土地层中某地铁风井深基坑的工程概况,结合地质条件和现场施工工序,分析围护结构变形、支撑轴力、立柱隆起和地表沉降等现场监测数据,并与其他工程案例进行对比,研究该基坑的变形性状.研究结果表明:虽然钢筋混凝土支撑刚度较大,但其浇筑及混凝土养护时间较长,在软土流变作用下,围护结构侧向位移在支撑施工期间随时间大幅增加.由于承受较大的土压力,混凝土支撑下的钢支撑设计轴力无法被完全利用,实测轴力值偏小.由于深部承压含水层的作用,当基坑开挖深度较大时,地表经历明显的上升.地下连续墙施工将导致不容忽视地表沉降,其沉降影响范围与基坑开挖所造成的影响范围相当.与上海地区地铁车站基坑变形对比发现:本风井基坑开挖所造成的地表沉降和沉降影响范围都较小.  相似文献   

6.
针对上海软土地层中某地铁风井深基坑的工程概况,结合地质条件和现场施工工序,分析围护结构变形、支撑轴力、立柱隆起和地表沉降等现场监测数据,并与其他工程案例进行对比,研究该基坑的变形性状.研究结果表明:虽然钢筋混凝土支撑刚度较大,但其浇筑及混凝土养护时间较长,在软土流变作用下,围护结构侧向位移在支撑施工期间随时间大幅增加.由于承受较大的土压力,混凝土支撑下的钢支撑设计轴力无法被完全利用,实测轴力值偏小.由于深部承压含水层的作用,当基坑开挖深度较大时,地表经历明显的上升.地下连续墙施工将导致不容忽视地表沉降,其沉降影响范围与基坑开挖所造成的影响范围相当.与上海地区地铁车站基坑变形对比发现:本风井基坑开挖所造成的地表沉降和沉降影响范围都较小.  相似文献   

7.
软土地层具有高灵敏度、高压缩性和承载能力低的特点,在外荷载和震动的作用下容易产生变形和不均匀沉降.依托珠海市杧洲隧道工作井基坑工程,通过现场监测和数值模拟分析地下连续墙墙体水平位移、地表沉降和支撑轴力,研究软土深基坑开挖变形发展规律及被动区加固的影响.结果表明,墙体水平位移曲线图呈现“勺型”,最大值出现在1.4倍基坑开挖深度左右的位置,被动区加固使墙体水平位移最大值降低33%;地表沉降呈现“沉降槽”曲线特征,最大值出现在距离基坑边缘0.3倍开挖深度的位置,被动区加固使地表沉降最大值小于开挖深度的0.1%;开挖土体使支撑轴力迅速增大,下一层支撑的设置可以有效降低上一道支撑的轴力增长,被动区加固使支撑轴力最大值降低25%;被动区加固是软土深基坑控制变形的有效措施.研究结果可为软土深基坑施工和监测提供参考.  相似文献   

8.
依托杭州沿江大道地下综合管廊深基坑工程,土体采用HSS模型进行有限元数值模拟,分析基坑降水开挖下基坑及邻近管线的变形,模拟结果与监测结果吻合较好,验证了有限元计算模型和参数选取的合理性。基于模拟提出隔断式基坑降水优化方案,并研究稳态渗流下隔水帷幕插入深度不同时基坑及邻近管线的变形响应。结果表明:随着悬挂式隔水帷幕深度加深,坑内外水头差线性增大,围护结构侧移峰值线性增大,管线竖向位移、坑外地表沉降线性减小;相较于悬挂式隔水帷幕,隔断式隔水帷幕对控制基坑降水引起的坑外地表沉降及邻近管线变形均有着显著优势,但对于围护结构变形控制则不利。  相似文献   

9.
深基坑工程监测分析方法   总被引:1,自引:0,他引:1  
在深基坑的开挖过程中,对基坑支护结构、基坑周围的土体和相邻的构筑物及周边环境进行综合、系统的监测分析,才能对工程情况有深入的了解,确保工程顺利进行.结合立丰购物广场基坑监测的工程实际,针对围护结构的水平位移、地表和地下管线及建筑物沉降、建筑物裂缝的开展情况、地下水位和基坑环境等进行了监测,并依据监测数据对该工程做出了安全性评价.指出了深基坑工程监测中需注意的两个问题并提出了改进意见.  相似文献   

10.
为了研究软土地区地铁车站深基坑施工围护结构变形是否存在长边效应,从土力学基本原理出发,以宁波地铁一号线海晏北路站西延段工程为研究对象,通过三维数据分析软件,对围护结构地下连续墙开挖后进行了数值模拟计算.结合施工现场大量监测数据,对软土地区地铁深基坑开挖时围护结构变形的规律和特点进行了研究分析.结果表明:软土地区深基坑开挖引起变形的拐角效应,只发生在围护结构拐角附近10m左右范围内,超出此范围的围护结构变形,并不受拐角效应的影响,也就是说拐角效应所影响的范围很小,不具有长边效应.  相似文献   

11.
依托洛阳市周山大道下穿隧道深基坑工程,结合周边复杂环境及水文地质条件,研究渗流作用对卵石地层隧道基坑及邻近管线的影响规律。采用MIDAS GTS NX软件建立模型,结合现场监测分析了开挖过程中基坑周边土体位移、地表沉降值、支护变形规律,以及基坑开挖和降水对邻近管线变形的影响,并将数值计算结果与现场监测数据进行对比分析。结果表明:围护结构水平位移整体为前倾曲线,随嵌入深度先增大后减小,最大位移为13.94 mm,位于桩身中部,并在规范允许范围内;降水期间地表沉降程度加剧,与基坑距离1.5倍设计开挖深度以上时沉降几乎占据总位移60%以上;开挖深度超过6 m时邻近管线较上一工况最大沉降差为3.35 mm,竖向变形整体为下沉形态,位移最终呈现两端小、中间大的结果,具有明显空间效应。  相似文献   

12.
临近地铁隧道的软土深基坑开挖时,若不能严格控制基坑施工效应,既有盾构隧道易出现损坏.在杭州市萧山区彩虹大道(工人路-市心路)B标段深基坑工程开挖过程中,对基坑下穿地铁隧道受影响范围内的隧道位移、收敛等进行监测,同时开展基坑地下连续墙与土体深层水平位移、地下水位、支撑轴力、地表和周边建筑物沉降、基坑围护墙顶与立柱沉降的监测工作.数据分析结果表明:基坑开挖对下穿隧道的影响以竖向位移为主,对水平位移和收敛变形影响较小;地下连续墙深层墙体水平位移与深层土体水平位移有明显的相关性,可用墙体水平位移代替土体水平位移;基坑地下水位的变化趋势与周边建筑物沉降变化趋势相同,开挖期间需密切关注地下水位的变化;基坑隆起是导致支撑轴力出现负值的主要原因,当支撑轴力出现负值时应高度关注坑底隆起和地表下陷.  相似文献   

13.
以某基坑开挖工程为研究背景,通过MIDAS/GTS分析双基坑同时开挖和单独依次开挖时对中间建筑物的影响机制。研究结果表明:单独依次开挖相对于同时开挖,基坑围护结构变形最大位移值比同时开挖少了45%左右,建筑物筏板沉降位移值比同时开挖多了50%~111%左右。通过数据模拟分析出两种不同开挖方式对建筑物的最不利位置,比较出两者的差异,优化施工步骤,从而保证建筑物的安全。本双基坑开挖的研究可为此类工程提供参考。  相似文献   

14.
城市深基坑开挖会对周边环境特别是浅基础建筑物的变形和安全产生影响。以南京市某深基坑工程为例,研究了基坑开挖对邻近多层建筑物变形的影响。首先建立了基坑的数值模型,将计算结果与实测值进行对比,验证了选取的材料参数与模型的合理性,然后对坑边多层建筑物的条形基础进行了模拟分析。结果表明:当有邻近条形基础存在时,围护墙的水平位移和坑边地表沉降均明显增大;邻近条形基础受开挖产生的附加沉降大于水平位移;增加基坑内支撑的数量可以使条形基础的附加沉降减小约14%。随着基坑与坑边距离的增加,土体竖向和水平位移的变化规律并不相同,当浅基础位于距坑边0.3He~1.0He(He为开挖深度)范围时,其沉降受开挖影响较大,距坑边较近时(<0.8He),土体水平位移呈现内凸形。当浅基础距离坑边超过1.0He后,土体水平位移明显减小。  相似文献   

15.
随着近年来高层建筑的大规模建设,基坑开挖深度逐渐增大,由于深基坑通常位于城市的繁华地带,且常常紧邻各种建筑物,如何处理好基坑开挖及支护等施工过程对周边环境的影响,成为基坑工程研究的关键。本文以近接浅基础建筑物的桩锚支护结构深基坑为工程背景,基于现场实测数据深入分析了桩体变形、桩顶位移和建筑物沉降等变化规律,基于Plaxis有限元软件建立数值模型,经模型计算结果与现场监测数据对比选取合理的土体本构模型,探讨了邻近建筑物基础位置和地基附加应力两个关键参数对桩锚支护结构基坑与邻近建筑物本身的影响规律。研究表明:混凝土支撑和冠梁在控制围护桩顶变形的同时会增大坑角效应的影响范围;对于基坑开挖卸载问题,HS模型相对于MC模型具有更准确的模拟效果;基坑施工主影响区域约围护结构后方2.5He(基坑开挖深度),建筑物平均沉降最大值和倾斜度最大值位置分别位于距围护结构约0.6He和1.1He处;建筑物平均沉降值δva最大值位置与地表沉降最大值位置吻合,倾斜度最大值位置约位于地表沉降曲线反弯点处;针对本工程,当建筑物基础埋深为2.5m,基坑围护桩与建筑物中心距离在7.5-52.5m范围内变化时,建筑物平均沉降和倾斜度最大值分别约为8.3mm和0.00025;平均每增高一层建筑物,其沉降值和倾斜度分别增加约0.9mm和0.7×10-4,基坑围护结构最大侧移量增加1.4-2.0mm,其增量随层数增高而增加。  相似文献   

16.
以上海市延长路地铁车站为依托工程,选取典型的无内衬地下连续墙水平位移监测点、轴力监测点和地表沉降监测点,根据其在车站内部结构施工不同阶段的最大位移时程曲线、轴力变化情况及地表沉降曲线等,分析了无内衬墙结构的变形特征,即基坑开挖阶段变形最大,中板施工完毕后,变形逐渐稳定.根据周围管线和建筑物的沉降、倾斜时程曲线,分析了无内衬墙变形对周围环境的影响,即基坑开挖阶段,管线沉降速率最大,建筑物倾斜明显,结构施工阶段,管线沉降速率、建筑物倾斜逐渐减缓至稳定,这与无内衬墙结构的变形规律相吻合.  相似文献   

17.
结合广州某软土深基坑工程实例,建立了地下连续墙、钢筋混凝土内支撑和土层的二维有限元模型,对深基坑开挖过程进行数值模拟.研究结果表明:随着基坑开挖深度的增大,围护结构水平位移增大,最大水平位移的位置由桩顶往下移,而且围护桩水平变形曲线发展形态呈现出向坑内凸的“大肚形”,与实测结果基本一致.支撑结构对减小基坑围护结构的变形起着重要作用,无支撑结构的桩体水平位移最大值达到24.6 mm;土体弹性模量及围护结构刚度对基坑围护结构变形影响较大,桩体水平位移随着土体弹性模量及围护结构刚度的增大而减小.  相似文献   

18.
通过土工离心机对三组挖深24 m软土超深基坑的开挖施工过程及失稳破坏进行模拟,研究了软土超深基坑稳定影响因素、破坏特征与征兆等.结果显示,墙趾进入硬土层后的嵌固作用对"踢脚"变形控制非常有利,也显著提高了基坑稳定性.嵌固作用在墙趾插入到硬土层中一定深度以后不再随插入深度增加而增强.挡墙位于上海典型软黏土中且不进入硬土层时,其临界插入深度比为0.78.软土深基坑失稳破坏征兆:(1)挡墙"踢脚"明显,量值约为墙体最大水平位移1/3;(2)坑外地表沉降达到1.38%H(开挖深度),地面出现大量横裂缝;(3)坑底靠近挡墙的土体隆起大于基坑中部,最大量值达到3.1%~3.8%H;(4)坑内土体处于被动土压力极限状态.可用于综合评判基坑的稳定性,指导类似超深基坑的设计、施工和安全监控.  相似文献   

19.
以某临近地铁车站的软土基坑工程为背景,运用二维有限元方法动态模拟基坑开挖过程,分析不同施工方案下土体变形及围护结构位移规律.得出如下结论:民建基坑和车站基坑同步开挖,土体及围护结构变形很大,远大于一级基坑的变形控制标准,风险较大;同步开挖中,两个基坑第二、三层土体及车站基坑的第六层土体开挖引起的土体变形大于其他施工步;基坑围护结构变形计算值与类似工程中围护结构变形监测值相近;民建基坑先于车站开挖,民建基坑拆撑、施工内部结构楼板,对地铁基坑的影响较小,变形可控.  相似文献   

20.
为确定西安地铁车站深基坑的变形特性,收集了18个地铁车站深基坑变形的实测数据,根据实测数据,对深基坑开挖引起的支护结构侧向位移和地表沉降的变形规律进行了统计研究,并将研究结果与其他地区的基坑工程进行比较。结果表明:基坑支护结构侧移曲线形状为"鼓胀形",最大侧移点深度均位于开挖面以上;最大侧移值在0.03%H~0.12%H(H为开挖深度)之间,其值随插入比的增大而减小;地表沉降曲线呈"凹槽形",最大地表沉降位置出现在0.51H处;最大地表沉降约为0.06%H,增大插入比对其值的影响并不显著;最大地表沉降随着最大侧移的增大而增大,且其比值约等于1.10。该研究成果可为西安市类似深基坑工程的变形预测、设计和施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号