首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Monodisperse and polydisperse aerosols were produced to evaluate the effect of particle size on cyclone and impactor performance. Monodisperse aerosols were generated from polystyrene latex and divinylbenzene particles. Polystyrene aerosols were also generated by mixing several monodisperse aerosols of different sizes. The mixture ratio of monodisperse aerosols was found by trial and error to generate polydisperse aerosols. Generated polydisperse aerosols had multimodal aerosol size distribution, which had the same peak point as shown in the size distribution of monodisperse particles. The results show the collection efficiency curves of a cyclone and impactor, when generating monodisperse particles were coherent with those for polydisperse ones. Our findings show that the size distribution and the size range of test aerosols can be easily determined by mixing monodisperse particles of known particle sizes, using a time saving procedure.  相似文献   

2.
Isokinetic sampling is required when evaluating the aerodynamic sizes of particles released from dry powder inhalers (DPI) under simulated breathing condition since anisokinetic sampling may lead to significant sampling error for coarse particles. We propose an isokinetic measuring system for aerosol particles from a stream in a narrow conduit of variable flow rates (variable flow rate aerosol sampler, VFAS) combined with Aerodynamic Particle sizer® APSTM spectrometer (model 3321, TSI Inc.). The VFAS was capable of generating variable sampling flow rates by adjusting the flow resistance of makeup air to produce constant flow rate of aerosol to the APS. The penetrations through the VFAS-APS system were measured using monodisperse particles with a size range of 0.7–15 μm by applying a rectangular flow rate–time pattern of sampling air, and we found that the VFAS-APS system can measure the number concentration of particles with the particle detection efficiency (particle penetration through the system) of almost unity. The VFAS-APS system may be a powerful tool to measure the size and concentration of powder released by the DPI in the size range of 0.5–15 μm.

Copyright 2012 American Association for Aerosol Research  相似文献   

3.
A model is presented to describe the collection of ultrafine particles by the UNC passive aerosol sampler. In this model, particle deposition velocity is calculated as a function of particle size, shape and other properties, as well as a function of sampler geometry. To validate the model, deposition velocities were measured for ultrafine particles between 15 and 90 nm in diameter. Passive aerosol samplers were placed in a 1 m 3 test chamber and exposed to an ultrafine aerosol of ammonium fluorescein. SEM images of particles collected by the samplers were taken at 125 kX magnification. Experimental values of deposition velocity were then determined using data from these images and from concurrent measurements of particle concentration and size distribution taken with an SMPS. Deposition velocities from the model and from the experiments were compared and found to agree well. These results suggest that the deposition velocity model presented here can be used to extend the use of the UNC passive aerosol sampler into the ultrafine particle size region.  相似文献   

4.
ABSTRACT

A new principle for collecting airborne particles, including microorganisms, has been introduced by injecting the particles into a swirling airflow from where they are removed onto a collection surface. A dry surface, a surface coated with an adhesive substance or a surface wetted by a liquid swirled onto the collection surface from a reservoir below can be used in the new collection method. The swirling air motion and aerosol injection into it are achieved by drawing the airborne particles through nozzles that are directed at an angle toward the collection surface. This principle has been incorporated into a new sampler that has been named “Swirling Aerosol Collector” (SAC; commercially available as the “BioSampler” from SKC Inc., Eighty Four, PA). The physical performance of the SAC has been evaluated against the widely used AGI-30 impinger by measuring the particle concentrations upstream and downstream of each sampler with an aerodynamic particle sizer. Tests with monodisperse polystyrene latex (PSL) particles ranging from 0.3 to 2.0 μm have shown that the SAC has better collection efficiency than the AGI-30 when the same collection liquid is used. A conventional impinger maintains constant collection efficiency for a relatively short sampling period, as the liquid evaporates quickly due to the violent bubbling of the liquid. In contrast to conventional impingers, the SAC can be used with nonevaporating liquids that are considerably more viscous than the liquids used in the impingers. Thus, the SAC can sample over any period of time. The new aerosol sampler produces minimal or no reaerosolization of particles collected in the liquid in contrast to significant reaerosolization in a conventional impinger. Since the SAC projects the aerosol particles toward the collection surface where they are removed from the swirling flow, it avoids or significantly reduces particle bounce from the collection surface even when the surface is dry.  相似文献   

5.

The purpose of this study was to numerically simulate the performance of an aerosol sampler with a curved, blunt, multi-orificed inlet in order to understand the sampling characteristics of the first prototype of the button personal inhalable aerosol sampler ("button sampler"). Because the button sampler inlet design is too complicated to apply a three-dimensional model, an axisymmetric two-dimensional model was created to be similar in geometry and to simulate the major features of the airflow through the sampler when facing the wind. Particle trajectories were calculated in a variety of wind velocities and were categorized into 5 groups based on their interactions with the curved surface of the sampling plane. Empirical sampling efficiencies of the button sampler for 3 particle sizes were used to adjust the calculated sampling efficiencies in an attempt to improve the accuracy of the two-dimensional axisymmetric model in accounting for interactions between particles and the surface of the inlet of the button sampler. Sampling efficiencies for other particle sizes were then predicted. The results showed that sampling efficiency decreased with increasing particle size up to approximately 40 w m and then remained virtually unchanged at about 35% up to 100 w m. Although the efficiencies were lower than the American Conference of Governmental Industrial Hygienists' (ACGIH) inhalability curve for larger particles, the pattern of the predicted sampling efficiency was quite similar to the ACGIH inhalability curve. Sampling efficiencies for liquid aerosol particles larger than 15 w m were predicted to be noticeably lower than those for solid particles. The results also showed that the multi-orificed curved surface played an important role in establishing a pressure drop with desired flow alignment inside the sampler, thus greatly reducing the wind effect and significantly improving the uniformity of particle deposition on the filter. The less uniform deposition found at high wind velocity can be improved by increasing the sampling flow rate.  相似文献   

6.
Accurate development and evaluation of inlets for representatively collecting ambient particulate matter typically involves the use of monodisperse particles in aerosol wind tunnels. However, the resource requirements of using monodisperse aerosols for inlet evaluation creates the need for more rapid and less-expensive techniques to enable determination of size-selective performance in aerosol wind tunnels. The goal of recent wind tunnel research at the U.S. EPA was to develop and validate the use of polydisperse aerosols, which provide more rapid, less resource-intensive test results, which still meet data quality requirements necessary for developing and evaluating ambient aerosol inlets. This goal was successfully achieved through comprehensive efforts regarding polydisperse aerosol generation, dispersion, collection, extraction, and analysis over a wide range of aerodynamic particle sizes. Using proper experimental techniques, a sampler’s complete size-selective efficiency curve can be estimated with polydisperse aerosols in a single test, as opposed to the use of monodisperse aerosols, which require conducting multiple tests using several different particle sizes. While this polydisperse aerosol technique is not proposed as a regulatory substitute for use of monodisperse aerosols, the use of polydisperse aerosols is advantageous during an inlet’s development where variables of sampling flow rate and inlet geometry are often iteratively evaluated before a final inlet design can be successfully achieved. Complete Standard Operating Procedures for the generation, collection, and analysis of polydisperse calibration aerosols are available from EPA as downloadable files. The described experimental methods will be of value to other researchers during the development of ambient sampling inlets and size-selective evaluation of the inlets in aerosol wind tunnels.

© 2018 American Association for Aerosol Research  相似文献   


7.
A microtrap inertial impactor has been developed and characterized for use as an area or personal sampler. The microtrap impactor utilizes a high-density multijet plate to direct airflow and a matched multiwell plate to impact and collect particles for extraction with a reduced pressure drop relative to inertial impactors with fewer jets. Reported here is the characterization of the microtrap impactor using a fluidized bed aerosol generator and a small volume nebulizer to generate particles of Arizona Road Dust, potassium chloride, and oleic acid. Collection efficiency was determined by measuring particle size distributions with an aerodynamic particle sizer. Two geometries of the microtrap were tested suitable for a two-stage coarse particle sampler, with 1–4 μm and a 4–10 μm stages. The 1 μm cut-point microtrap stage has a collection efficiency above 97% for particles greater than 2 μm in diameter (at a 10 L/min flow rate and a pressure drop of 0.12 kPa). This stage's collection efficiency was constant for a period of time up to 10 h under typical ambient conditions without any coating on the impaction surface. The microtrap impactor provides an improvement in area sampling due to its high collection efficiency at a low pressure drop across the device, and its use of an uncoated impaction surface allowing for the extraction and analysis of biological samples.

© 2013 American Association for Aerosol Research  相似文献   

8.

Numerical calculations were conducted to simulate air and particle behavior near and into the inlet of an aerosol sampler in order to determine sampling efficiency performance. This was done with the pre-verified commercial computational fluid dynamics (CFD) software package, FLUENT (Fluent, Inc., Lebanon, NH, US). Air flow behavior was calculated for steady-state conditions approaching and flowing into 3D geometries of an aerosol sampler free in the air that was similar in dimension to two commercial samplers, namely the Gesamtstaubprobenahme sampler (GSP) and the conical inhalable sampler (CIS). Particle trajectories were calculated in a Lagrangian reference frame on the resulting velocity fields. Based on the particle trajectories, sampling efficiencies were calculated and compared to those reported in the literature for a CIS aerosol sampler. They were found to have similar overall trends for particle sizes up to 21 μ m. Using a correction factor, agreement was observed to be very good for smaller particles, but less so for larger particles.  相似文献   

9.

Due to the lake of in-situ aerosol particle analysis systems, aerosol samples are taken and analyzed off-line. For detailed analysis of particle properties such as shape, morphology, and composition, off-line operating analytical tools like light microscopes, scanning electron microscopes (SEM), total reflection x-ray fluorescence (TXRF), and so on are used. The analysis must be performed on a representative sample of particles homogeneously deposited on a flat sample plate. This avoids sample preparation steps which may change the sample. In this paper we describe the design, construction, and evaluation of a continuous sampling device that deposits gasborne particles on an analytically suitable sample plate. The collection efficiency and the deposition pattern were optimized using a numerical model and experiments. It turned out that representative samples appropriate for further analysis can be taken in the particle size range from 0.03 mu m < Dp < 10 mu m. Additionally, the sampling efficiency was investigated for particles smaller than 0.03 mu m using electrical and non-electrical deposition mechanisms like diffusion and thermophoresis. The investigations performed demonstrate that the designed electrostatic precipitator (ESP) is a very useful tool for homogeneous particle deposition on analytically suitable flat sample plates and can be used as a back-up filter. Further, the ESP especially can be used in combination with a differential mobility analyzer (DMA) if detailed investigations of a narrow particle size range of a polydisperse aerosol are required.  相似文献   

10.
11.
A two-dimensional array of spots of deposited nanoparticles as small as 7 × 7 μm was fabricated on a polymer film using a modified commercial nanometer aerosol sampler (NAS; TSI-model 3089) coupled with a surface-discharge microplasma aerosol charger (SMAC). The charged aerosol particles were electrostatically focused by a metal mesh (electrically grounded) on the polymer film (insulator) and electrode (3 kV). The effect of mesh geometry on the concentration ratio (focusing ratio × collection efficiency) was evaluated using monodisperse polystyrene latex particles with diameters of 48, 100, and 300 nm. The electrostatic focusing effect was also analyzed by a numerical simulation of the electrostatic field. The two-dimensional patterning of nanoparticles is an effective method in concentrating particles for the subsequent observation and chemical analysis of aerosol particles. In our experiments, the SMAC-NAS system achieved a net concentration ratio of more than 20 times for 48- and 100-nm particles, which would significantly shorten the aerosol-sampling time. The particle deposition patterns formed on a transparent polymer film may provide samples for analyzing the transmittance, luminescence, and other optical characteristics of deposited nanoparticles.

Copyright 2015 American Association for Aerosol Research  相似文献   

12.
Aerodynamic particle sizer (APS) users typically calibrate the particle sizing capabilities, but not the counting efficiency upon which aerosol concentration results are based. Herein, comparisons were made between the counts provided by an ink jet aerosol generator (IJAG) with those measured by an APS. Near-monodisperse (geometric standard deviation of about 1.06) liquid or solid aerosols in the size range of 0.95 to 13.3 μm aerodynamic diameter (AD) generated with an IJAG were released into the inner inlet-tube of the APS in a manner that rendered APS wall and aspiration losses negligible. For most experiments, the IJAG generated 75 particles/s, which rate was maintained by the IJAG system through control of electrical pulses applied to its ink jet cartridge. For particles in the size range of 2–13.3 μm AD, the ratio of relative detection efficiency (ratio of the number of particles counted by the APS to the number reported as generated by the IJAG) was 99.3 ± 1.4%; however, for test particles between 0.95 and 2 μm AD, the relative detection efficiency was somewhat lower, but the drop off was less than about 2%. This slight drop off is likely associated with the light scattering detection approach and corresponding counting algorithm of the APS. Tests were conducted where the IJAG produced 7.0 μm AD particles at rates of 1 to 500 s-1 and the results showed essentially a 1:1 correspondence between IJAG and APS counts. The presence of smaller-sized background particles did not affect the measured APS counts of larger-sized challenge particles.

Copyright 2014 American Association for Aerosol Research  相似文献   


13.

A virtual impactor sampler, which is designed to concentrate aerosols from a 1000 L/min ambient air sample into a 1 L/min exhaust airflow stream, was tested with near monodisperse aerosols in aerosol wind tunnels to characterize sampling performance. New methodology is introduced to correct results for the presence of doublet and satellite aerosol particles that can be present in the particle size distribution from a vibrating jet atomizer. Aerosol penetration from the free stream near the sampler inlet to the outlet of the device has a peak value of 78% at a particle size of 3.9 w m AD. Sampling effectiveness, which is the mean penetration over the size range of 2.5 to 10 w m AD, is 48%. There are 4 virtual impaction stages in the sampler, and examination of the regional losses shows that most of the aerosol deposition occurs on surfaces of the last 2 stages. The ideal power expenditure of the sampler (excluding electrical and frictional losses in the motor and bearing losses in the blower) is 58 watts as compared to the actual power consumption of 320 watts.  相似文献   

14.

The ability of the Model 3320 aerodynamic particle sizer (APS) to make accurate mass-weighted size distribution measurements was investigated. Significant errors were observed in APS size distribution measurements with measured mass median aerodynamic diameters (MMADs) as much as 17 times higher than from cascade impactor measurements. Analysis of APS correlated time-of-flight and light scattering data indicated that the MMAD distortions were due to a few anomalous large particle measurements (~0.1% of the total measurements) with surprisingly low scattered light. Computational fluid dynamics modeling indicated that these anomalous measurements were due to particles that deviated from the intended aerosol pathway and recirculated through the APS measurement volume at low velocities leading to erroneous large particle measurements. A technique for removing erroneous measurements based on correlated aerodynamic diameter and light scattering values is presented. When this technique was used, APS and cascade impactor size distribution measurements agreed well.  相似文献   

15.
Chemical, biological, radiological, and explosive incidents produce immediate as well as delayed hazards as a result of reaerosolization of deposited particles from surfaces. Understanding reaerosolization mechanisms is important for hazard prediction and mitigation processes. A method to efficiently reaerosolize 1–5 µm particles (approximately the size of bacterial spores) has not been previously available; therefore, this study was conducted to test a simple and effective method to reaerosolize such particles. In this work, a high-speed vertical impinging jet was used to reaerosolize 1–5 µm polystyrene latex microspheres from a substrate, and measured removal efficiencies were compared with the performed numerical predictions. Experiments were conducted to determine the effect of location, number of pulsed air jets, particle size, aerosol generation methodology (wet and dry), and relative humidity (RH) on the amount of reaerosolization. The experimental results agreed with the numerical predictions and demonstrated that maximal reaerosolization efficiency (~90% in several cases) occurs at a few millimeters from the jet center. At the peak removal location, reaerosolization increased with increasing particle size and with increasing number of pulsed air jets. Dry deposited particles exhibited significantly higher reaerosolization compared to wet deposited particles. Equilibration of samples at low (20%) RH showed higher reaerosolization compared to the high RH conditions for dry deposited particles. This study demonstrates the effectiveness of using a single vertical impinging jet for localized reaerosolization of bacteria-sized particles from surfaces.  相似文献   

16.
Large inhalable particles are present in the workplace, yet few instruments exist to count and size such particles in situ. Inhalable-aerosol exposure can be evaluated using mass-based samplers such as the IOM or Button sampler, but these devices do not provide information on particle size distributions. Size-resolved samplers such as cascade impactors or the Aerodynamic Particle Sizer are limited to particle sizes <20 μm due to difficulties with particle aspiration and transmission losses. This work describes the development of two samplers capable of measuring the concentration and size distribution of airborne particles from 20 to 100 μm in aerodynamic diameter. One device is based on the principles of an upflow elutriator, whereas the other eliminates the potentially adverse effects of an upward-facing jet to separate particles from a quiescent airstream. Analytical models and computational fluid dynamics simulations were used to predict the performance of the two samplers. Sampling efficiencies of these devices were tested in a calm-air chamber with polydisperse, fluorescent microspheres (10–100 μm). Epifluorescent microscopy of settled dust was used to determine reference particle counts and sizes. Both devices are capable of size-selective sampling; however, the second sampler produced higher sampling efficiencies and sharper cut points compared to the simpler elutriator design. Experimental sampling efficiencies for both samplers showed good agreement with computational and analytical solutions. This work suggests that these devices can size-segregate inhalable aerosols in quiescent environments.

Copyright © 2015 American Association for Aerosol Research  相似文献   

17.
We investigated the effect of inkjet operating parameters on the size control of aerosol particles. Droplets with agglomerates of polystyrene latex particles were generated from an inkjet nozzle and continuously dried up at the temperature of 38°C. When droplets have the size range of 30 to 70 μm in diameter, aerosol particles with the size range of 3.5 to 7.1 μm were generated after the drying process. We controlled the particle size easily within a factor of two by adjusting rising/falling time and voltages of an actuating waveform. Generated particles were shown to have a narrow particle size distribution. Thus, the particle concentration of aqueous suspension does not need to be adjusted precisely in order to control the size of generated aerosol particles.

Copyright © 2015 American Association for Aerosol Research  相似文献   

18.
In this study, we present the design, calibration, and performance evaluation of a portable TEM sampler to collect ultrafine particles on TEM grids. The sampler is based on electrostatic deposition. We performed calibration experiments with monodisperse model particles of different size, morphology, and chemistry to evaluate the efficiency of the device. Additionally, we modeled the performance of the TEM sampler using finite element calculations to calculate the sampling efficiency as function of particle size. We find a good agreement between the model calculations and calibration experiments, but with a systematic deviation of about 30%. We present further experiments with polydisperse particles and derive particle size distributions and absolute number concentrations from TEM images. The shape of the size distribution is very similar to the corresponding SMPS measurements, while the total number concentration has a larger uncertainty. Thanks to the compact design of the sampler, it can be used to collect ultrafine particles even in remote or hostile environments, where no electric power is available.  相似文献   

19.
Recently, the protection of health care workers from tuberculosis-containing aerosols has been the subject of considerable debate. An experimental apparatus and test protocol were developed to measure the collection efficiency of surgical mask and respirator filter media using a microbial aerosol challenge. Mycobacterium chelonae (M. chelonae), used as a surrogate for Mycobacterium tuberculosis, was generated from liquid suspension using a Collison nebulizer. Upstream and downstream concentrations of viable aerosol particles were measured using Andersen cascade impactors, while total particle concentrations were measured with an aerodynamic particle sizer (APS). A monodisperse polystyrene latex (PSL) sphere aerosol (0.804 μm) was used in separate experiments to measure filter efficiency; concentrations were determined with the APS. The mycobacterial aerosol ranged in size from 0.65 to 2.2 μm when measured with the cascade impactor. A similar size range was found with the APS, yielding a count median diameter of about 0.8 μm. Samples of the mycobacterial aerosol were collected on glass slides, stained M. chelonae, as determined by environmental scanning electron microscope, were found to be rod shaped with an average length of 2 μm and average width of 0.3 μm. To evaluate the apparatus over a range of filter efficiencies (10–100%), different layers of fiberglass filter paper were tested for penetration using a 0.12 μm dioctyl phthalate (DOP) aerosol measured with a light scattering photometer, in addition to the mycobacterial and PSL aerosols. For the range of efficiencies tested it was shown that filter collection of DOP was linearly related to that of both mycobacterial and PSL sphere aerosols (r2 = 0.99), demonstrating that an inert aerosol may be used to predict the collection of biological aerosols by such filter media.  相似文献   

20.

This article summarizes the results of an extensive experimental study of sampling losses in thin-walled probes at various values of velocity ratio R and the probe orientation with respect to the freestream. The purpose of this study was to gain insights into the complex interaction of various parameters that influence sampling losses and the consequent effect on the overall sampling efficiency. A 0.635 cm diameter sharp-edged tube was mounted in a small wind tunnel where the freestream velocity could be varied over a wide range of values. Polydispersed spherical glass beads were used as the test aerosol. The number concentration and the particle size distribution were measured using the aerodynamic particle sizer (APS 3310). The sampling efficiency was determined as a function of orientation for a range of particle sizes (or Stokes number). By using an existing model to predict the aspiration efficiency for thin-walled probes, the sampling losses could be isolated from the sampling efficiency. In this manner a new empirical model was developed to predict the losses as a complex function of Stokes number, sampler orientation, and velocity ratio. The losses appear to be influenced by particle inertia, impaction, gravitational settling in the boundary layer developing inside the thin-walled probe, and vena contracta or flow recirculation loss near the entry. It was evident from the results that these losses are strongly influenced by the Stokes number and sampler orientation. The losses also increased strongly with increasing value of velocity ratio for all orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号