首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
依据相关标准对聚羧酸系高性能减水剂进行产品质量认证,将产品质量关口前移,把握质量管理的全过程,使企业每一个质量控制的过程受控,实施过程的监视和测量,严格控制认证产品质量,确保企业提供质量稳定的合格产品,从而使工程建设者更高效地选择合格供方,提高混凝土工程的质量。通过对聚羧酸系减水剂的产品认证,不仅使客户的产品质量得到了保证,而且可以使获证组织的管理绩效得到提升,最终促进国家基础设施的高质量发展。  相似文献   

2.
聚羧酸系高性能减水剂的合成技术   总被引:7,自引:1,他引:7  
介绍了国内外聚羧酸系高性能减水剂的研究发展现状、分子结构特征以及聚羧酸类高性能减水剂的合成方法,分析了聚羧酸系高效减水剂的不同合成技术的优缺点,认为制备具有聚合活性的大单体的技术是聚羧酸系高性能减水剂需要解决的紧迫问题,提出了聚羧酸系高性能减水剂的研究方向和研究过程面临的问题及解决措施.  相似文献   

3.
聚羧酸系减水剂作为第三代减水剂以其独特的优势得到业界的认可,其市场份额正逐年增加。本文根据某地区交通工程中送检样品的检测结果进行统计,从生产工艺和检测技术两方面分析其可能产生的不合格原因,建议加强对生产厂家(或供应商)进行有效的技术指导与监管,规范检测单位的检测技术。促进聚羧酸系减水剂的推广应用。  相似文献   

4.
聚羧酸系高性能减水剂的研究现状及发展趋势   总被引:6,自引:0,他引:6  
首先简要回顾了减水剂的发展历程,综述了聚羧酸减水剂的结构和应用情况.然后分别从吸附-分散、胶体化学和界面化学角度,系统总结和分析了聚羧酸减水剂的构效关系和作用机理的最新研究进展.最后,根据目前研究和应用中存在的问题及将来发展的需求,提出了今后的发展方向.  相似文献   

5.
聚羧酸系高效减水剂的研究现状和应用前景   总被引:2,自引:0,他引:2  
高效减水剂的研究已成为混凝土材料科学中的一个重要分支,并推动混凝土材料向高强、高性能化不断发展,其中聚羧酸系高效减水荆是新一代绿色高效减水剂的代表.结合国内外资料综述了聚羧酸系高效减水刑的研究现状、性能特点、分散稳定机理以及今后的发展方向.指出对聚羧酸系高效减水剂的基础理论研究还有待进一步加强;开发、合成、生产多元化和不同性能的系列聚羧酸系减水荆母体、多功能的聚羧酸系减水剂衍生产品,已成为当今聚羧酸系高效减水荆发展的必然趋势.  相似文献   

6.
聚羧酸高性能减水剂与其它高效减水剂相比,有许多突出的性能:低掺量(0.2%--0.5%)而发挥高的分散性能;保坍性好,90分钟内坍落度基本无损失;在相同流动度下比较时,延缓凝结时间较少;与水泥适应性强、混凝土收缩小等特点。由于它的诸多优点,致使在现在工程质量要求比较严苛的客运专线混凝土工程中会经常使用到。本文简单叙述了聚羧酸减水剂使用的优缺点和在客运专线上使用过程的案例和问题的处理方法。  相似文献   

7.
聚羧酸系高效减水剂的研究现状与展望   总被引:13,自引:0,他引:13  
简述了聚羧酸类高效减水剂国内外研究现状,介绍了聚羧酸类高效减水剂的化学结构、作用机理、性能特点,并提出了聚羧酸类高效减水剂今后的研究内容及研究方向。  相似文献   

8.
新型聚羧酸系高效减水剂PCS的实验研究   总被引:3,自引:0,他引:3  
以"分子结构设计"为指导,通过引入低引气功能的大分子单体,研制了聚羧酸系高效减水剂PCS,克服了由于引气过大造成混凝土强度低的缺点.对PCS性能进行了实验研究,结果表明,当m(水):m(水泥)=0.3:1.0,w(PCS)=0.6%时,水泥净浆流动度可达32.8cm,混凝土含气量只有2.3%,减水率达33.2%,1h坍落度保持率达92%~97%,28天的抗压强度比达到了167%.  相似文献   

9.
京沪高速铁路Ⅵ标段主要为桥梁工程,采用高性能混凝土结构,设计寿命100年。本文主要介绍了聚羧酸系减水剂在该工程中的应用,重点探讨了原材料选择、生产过程质量控制、高性能混凝土配合比设计及聚羧酸系减水剂在高性能混凝土施工中应注意问题,并指出高性能混凝土与普通混凝土的异同。  相似文献   

10.
丙烯酸改性萘系高效减水剂的研制   总被引:1,自引:0,他引:1  
尹全勇  万朝均  王冲  刘芳  吴建华 《材料导报》2007,21(Z2):255-257,261
丙烯酸改性荼系高效减水剂意在原有荼系高效减水剂的分子结构中通过化学合成引入羧基.以多羧酸高效减水剂常用原料丙烯酸为改性剂,在萘系高效减水剂合成工艺的基础上,通过优化原料比例、反应时间等对萘系高效减水剂进行改性.使用沉降试验方法对合成过程进行在线监测,并对合成产物的分散性能进行初步测试.结果表明:丙烯酸改性萘系高效减水剂在保持原有萘系高效减水剂分散效果的同时,显著提高了分散效果的保持时间.  相似文献   

11.
徐放型聚羧酸系减水剂的合成研究   总被引:1,自引:0,他引:1  
通过合成的聚乙二醇马来酸半酯大单体(PMAn)取代部分烯丙基聚氧乙烯醚(XPEG)进行共聚反应,得到了徐放型聚羧酸系高性能减水剂。合成影响因素的研究结果表明,当PMAn分子量为750且PMAn取代XPEG的比例为20%时,减水剂的减水率和保坍能力最好。红外光谱分析结果表明,合成的减水剂未聚合的单体残留很少;采用合成的减水剂配制的混凝土具有突出的坍落度保持能力。  相似文献   

12.
从分子结构设计的角度出发,选择了一种具有双官能团结构的功能单体参与聚羧酸高性能减水剂的主链结构的合成,通过正交设计试验研究制备了一系列具有交联结构的聚羧酸高性能减水剂。试验结果分析表明该减水剂具有更优的分散性能及对各种水泥的适应性,正交分析得到最优组合为MAA与单体E的摩尔比1.5,链转移剂用量0.25%,引发剂用量1.65%。  相似文献   

13.
一类聚羧酸高性能减水剂的设计合成与应用   总被引:2,自引:0,他引:2  
分别以甲基丙烯磺酸钠(SMAS)等5类含磺酸基的不饱和单体,合成了5种侧链带有磺酸基团的梳形聚羧酸减水剂。用红外光谱(FT-IR)对其结构进行了确认。正交试验分析表明,SMAS是最佳的磺酸基单体,并用SMAS与丙烯酸、丙烯酸酯-聚乙二醇单甲醚共聚得到了一种新型聚羧酸高效减水剂(SPC3)。应用试验结果表明,当水灰比(W/C)为0.29,掺入量为0.30%时,SPC3的减水率高达36%,而萘磺酸甲醛缩合物(SNF)减水剂的减水率只有17%。同样条件下,掺入SPC3制备的泵送混凝土在120 min的坍落度损失为8.9%,远小于掺入SNF时的65.0%。掺入0.30%的SPC3制备的高强度混凝土(HPC),其90d压缩强度达到71.6 MPa。  相似文献   

14.
何廷树  刘鹏  高哲  潘亚生  潘晓让 《材料导报》2012,26(10):116-118
萘系高效减水剂合成过程中回收的挥发萘颜色较深,与工业萘相比纯度降低近3%。使用掺有挥发萘合成的萘系高效减水剂配制水泥净浆,研究表明,随着挥发萘掺入量的增加,净浆初始流动度减小,经时损失增大;混凝土试验表明,随着挥发萘掺入量的增加,萘系高效减水剂的减水率降低,增强作用减弱。因此,在挥发萘回用过程中,掺量不宜过大,最好不要超过5%。  相似文献   

15.
以过硫酸铵(APS)为引发剂,N-氨基甲酰马来酸(NCMA)、聚乙二醇单烯丙基醚(APEG)和甲基丙烯磺酸钠(SMAS)为聚合单体,合成N-氨基甲酰马来酸-甲基丙烯磺酸钠-聚乙二醇单烯丙基醚(SP)。通过FT-IR和1 H-NMR谱图对SP结构进行表征。以净浆流动度为指标,考察了引发剂用量、反应温度、SMAS/APEG物质的量比和NCMA/APEG物质的量比对净浆流动度的影响。结果表明:最佳反应条件为SMAS/APEG物质的量比1.2、NCMA/APEG物质的量比1.0、引发剂用量0.4%(质量分数)和反应温度50℃。以最佳反应条件制备的SP具有较好的工作性能和分散效果,掺量为0.2%(质量分数)时,减水率达25.7%,净浆流动度达311mm。  相似文献   

16.
陈耀海 《硅谷》2010,(11):66-66
使用减水剂配制混凝土是改善混凝士性能的一种好方案,结合大体积筏板基础工程实践,阐述聚羧酸系缓凝高效减水剂的作用机理、施工方法和施工要点。  相似文献   

17.
该文针对鲁南高铁临沂东梁场对预应力梁混凝土的技术要求,以混凝土的工作性能、力学性能及耐久性能为目标,尤其以耐久性为核心,进行了C50预应力梁的混凝土配合比设计。通过采用性能优良的聚羧酸系高性能减水剂、低水胶比的技术路线,成功配制出高工作性能、良好的力学性能以及优异的耐久性能的预应力梁混凝土。最终该混凝土在临沂东梁场得到了成功的应用,取得了良好的效果。  相似文献   

18.
介绍聚羧酸系减水剂在满足铁路客运专线高性能混凝土综合性能方面的能力和特点,分析了工程应用中使用聚羧酸系减水剂存在的一些问题。提出解决聚羧酸系减水剂与水泥的相容性问题以及保持聚羧酸系减水剂本身质量稳定性是目前该减水剂应用的关键。  相似文献   

19.
以甲氧基聚乙二醇、马来酸酐、甲基丙烯磺酸钠等为原料,合成一种聚羧酸系高效减水剂,并与聚乙烯醇和超细SiO2粉体进行搅拌配制成喷雾干燥料液,在离心式喷雾干燥塔中对料液进行干燥,制备一种粉末状聚羧酸系减水剂,探讨干燥温度对粉末状聚羧酸系减水剂性能的影响。结果表明:在雾化盘转速为14 000 r/min,进料速率为80 g/min的条件下,随着干燥温度的升高,粉末状聚羧酸系减水剂的含水率下降,而滤渣率和休止角先下降后升高;干燥温度对粉末状聚羧酸结构没有很大的影响;最佳干燥温度为160~200℃。  相似文献   

20.
聚羧酸系减水剂的构性关系及其作用机理研究   总被引:2,自引:0,他引:2  
聚羧酸系减水剂作为一种高性能减水剂,目前已成为国内外研究与发展的热点。概述了近几年国内外高效减水剂的研究与发展现状,阐述了聚羧酸系高效减水剂的分子结构、性能特点及作用机理,分子主链上阴离子基团越多及聚氧乙烯长侧链越长,聚羧酸系减水剂的分散性能和流动保持性能越好。聚羧酸系减水剂主要依靠聚氧乙烯长侧链的位阻效应和羧基及磺酸基的静电斥力来分散水泥颗粒。最后,提出了减水剂在应用中存在的问题并展望了其发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号