共查询到19条相似文献,搜索用时 62 毫秒
1.
高光谱遥感图像分类已被公认为是高光谱数据处理的基础性和挑战性任务之一,其最终目标是给影像中的每个像元赋予唯一的类别标识。针对传统高光谱遥感图像分类方法只依靠单一特征进行分类的问题,提出一种基于空谱多特征融合的分类策略。首先在光谱域上利用主成分分析法PCA降维,得到前3个主成分数据,然后通过多视图策略对PCA降维后的数据分别提取局部二值模式LBP、方向梯度直方图HOG与Gabor特征,将其输入到多视图支持向量机进行分类。所提方法在Indian Pines数据集上进行验证,实验结果表明,所采用的分类策略相较于传统只利用单一特征进行分类的方法分类精度更高。 相似文献
2.
图像分类技术一直以来是图像处理的一个难题,特别是基于内容的网络图像实时搜索和过滤是图像快速分类的基础,利用图像的颜色特征和纹理特征在局部区域进行图像分类,并对敏感区域利用支持向量机SVM分类器来实现多特征的分类,可以快速实时的实现图像分类。 相似文献
3.
4.
5.
针对传统红外图像目标分类方法准确率低的问题,提出了一种用结合多特征融合的粒子群优化(Particle Swarm Optimization, PSO)算法来优化支持向量机(Support Vector Machine, SVM)的方法。该方法采用方向梯度直方图(Histogram of Oriented Gradient, HOG)和局部二值模式(Local Binary Pattern, LBP)两类特征描述红外图像中目标的轮廓特征和局部纹理,从不同的方面展现红外图像的特点,在图像的特征表达上具有一定的互补性。在特征提取后对样本数据进行凸包算法计算,得到一些具有代表性的样本数据,从而提高分类计算效率;在分类模型训练时,采用PSO算法优化SVM,寻找SVM的最优惩罚因子和核参数,从而提高分类模型的准确率。实验结果表明,多特征融合的分类模型的准确率比单一特征的分类模型提高近10%,且经PSO优化的SVM最终模型的分类准确率高达99%。 相似文献
6.
利用图像特征加权方法和支持向量机实现了图像的有效分类。首先根据特征的稳定性来判断特征的重要程度,从而赋予不同权重;然后借助支持向量机实现图像分类;最后采用不同颜色和纹理特征验证了在特征加权和不加权情况下图像分类的准确程度。实验结果表明本文的方法有效提高了图像分类的准确性。 相似文献
7.
8.
一种基于图像特征的图像分类方法 总被引:1,自引:1,他引:1
图像分类是色域匹配的关键环节,不同类型的图像采用不同的匹配方法.针对如何有效分类图像,设计了一种基于图像特征的图像分类算法.首先建立图像颜色的三个通道特征统计模型和基于空间灰度级的纹理统计、边缘特征的统计模型,然后根据模型计算出图像的三类特征值,利用特征统计评判和神经网络技术分析计算数据,最后得出图像类型.实验结果表明,算法有较高的分类精度. 相似文献
9.
基于支持向量机的高光谱遥感图像分类 总被引:15,自引:1,他引:15
多数传统分类算法应用于高光谱分类都存在运算速度慢、精度比较低和难以收敛等问题.本文从支持向量机基本理论出发建立了一个基于支持向量机的高光谱分类器,并用国产OMIS传感器获得的北京中关村地区高光谱遥感数据进行试验,分析比较了各种SVM核函数进行高光谱分类的精度,以及网格搜寻的方法来确定C和愕闹?结果表明SVM进行高光谱分类时候径向基核函数的分类精度最高,是分类的首选.并且与神经网络径向基分类算法以及常用的最小距离分类算法进行比较,分类的精度远远高于SVM分类算法进行分类的结果.SVM方法在高光谱遥感分类领域能得到广泛的应用. 相似文献
10.
11.
基于多特征的遥感影像决策树分类 总被引:3,自引:0,他引:3
构建了一种基于多特征的遥感影像决策树分类方法。通过对遥感影像进行波段代数运算、主成分分析和图像分割等处理,提取出影像上地物的光谱维特征、纹理特征和形状特征。在此基础上,结合试验区主要地物类型提纯后的训练样本集,采用C5.0决策树分类法进行影像分类,实现主要地物的空间分布专题信息提取,并利用该方法对Landsat-5TM影像进行了分类实验。结果表明,所提出的方法能够有效地提高分类精度。 相似文献
12.
针对高分辨率遥感影像多尺度、空间分布复杂以及特征繁多的特点,从遥感影像特征提取的尺度效应以及各类地物显著性特征各异入手,提出了基于多尺度多特征融合的高分辨率遥感影像分类的方法。该方法构建最优尺度分割函数模型,寻找出各地物的最优尺度,分别提取影像的纹理、颜色和形状特征。在此基础上,利用各地物特征的显著性差异实现多尺度下多特征的加权融合。该加权融合方法突破了常规的最优尺度分割算法未能充分考虑各类地物特征差异性的局限性,通过分析各类地物的显著性,建立了各个特征在分类中所占权重的模型。实验结果表明:相对传统无监督分类算法,该方法准确率提高约7%,且运行效率高。 相似文献
13.
14.
提出一种基于支持向量机的实际调制信号自动识别新方法。利用支持向量机把分类特征向量映射到一个高维空间,并在高维空间中构造最优分类超平面以实现信号分类。计算机仿真结果表明,该方法对实际采集的信号具有很好的分类性能。 相似文献
15.
16.
遥感影像几何校正的质量和速度将会直接影响到后续的数据处理和定量提取信息的质量.基于大数据量的3级无人机影像,探讨将其从西安80坐标转换到北京54坐标的快速处理方法.分别采用Erdas二次多项式变换和FME仿射变换进行单幅影像校正,对比发现仿射变换校正后的影像与参考卫星影像地物匹配效果更好,可达到应用的精度.并利用FME批处理功能,大大提高了工作效率.实验表明:当控制点精度满足要求且原始到目标坐标系的转换属于二维线性变换时,FME是快速几何校正的一种有效手段. 相似文献
17.
在许多地球科学应用中要用到大量的高时空分辨力的地球观测数据。时空图像融合方法为产生高时空分辨力的数据提供了一种可行且经济的解决方案。然而,现有的一些基于学习的方法对于图像深层特征提取能力较弱,对于高分辨力图像细节特征利用度不够。针对这些问题,提出一种基于多级特征补偿的遥感图像时空融合方法。该方法使用2个分支进行多层级的特征补偿,并提出了融合通道注意力机制的残差模块作为网络的基本组成单元,可以将高分辨力输入图像的深层特征更为详尽地提取利用。提出一种基于拉普拉斯算子的边缘损失,在节省预训练计算开销的同时取得了很好的融合效果。使用从山东和广东2个地区采集的Landsat和中分辨力成像光谱仪(MODIS)卫星图像对所提出的方法进行实验评估。实验结果表明,提出的方法在视觉外观和客观指标方面都具有更高质量。 相似文献
18.
针对现有纹理分类算法的局限性,提出了一种基于Gabor小波和支持向量机的纹理分类算法.首先提取纹理Gabor分解后各子带的均值和方差作为特征向量,进而利用支持向量机算法实现分类.实验结果表明,与传统的分类方法相比,Gabor小波和支持向量机相结合能有效地提高分类正确率. 相似文献
19.
分析了遥感图像的统计特性,提出了适合遥感图像压缩的矢量量化与小波变换相结合的压缩方法。该方法将遥感图像小波变换后高频子图划分为一定大小的的像块,对局部相关性较强、灰度变化较小的像块进行高倍压缩;对局部相关性较小、灰度变化较大的像块进行高保真压缩。实验表明,本方法具有良好的压缩性能,适用于遥感图像的压缩。 相似文献