首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B2O3/SiO2 are used as composite sintering aids to fabricate Nd:YAG ceramics by solid-state reaction and vacuum sintering method at 1750°C for 5h using Nano-Al2O3, Y2O3, Nd2O3 as starting materials. In this article, we focus on the influence of B2O3/SiO2 ratio on grain size, porosity and relative density. Finally, with the increase of B2O3/SiO2 ratio, the density and shrinkage rate of transparent ceramics increase, the grain size becomes uniform and the porosity reduces, for the reason that B3+ begins to vaporize at 1300°C and is reduced to trace levels by 1600°C. The best B2O3/SiO2 ratio is 4: 1.  相似文献   

2.
The effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of BaTi4O9 ceramics was investigated. The BaTi4O9 ceramics were able to be sintered at 975C when B2O3 was added. This decrease in the sintering temperature of the BaTi4O9 ceramics upon the addition of B2O3 is attributed to the formation of BaB2O4 second phase whose melting temperature is around 900C. The B2O3 added BaTi4O9 ceramics alone were not sintered below 975C, but were sintered at 875C when CuO was added. The formation of BaCu(B2O5) second phase could be responsible for the decrease in the sintering temperature of the CuO and B2O3 added BaTi4O9 ceramics. The BaTi4O9 ceramics containing 2.0 mol% B2O3 and 5.0 mol% CuO sintered at 900C for 2 h have good microwave dielectric properties of εr = 36.3, Q× f = 30,500 GHz and τf = 28.1 ppm/C  相似文献   

3.
Li2MgTiO4 (LMT) ceramics which are synthesized using a conventional solid-state reaction route. The LMT ceramic sintered at 1250°C for 4 h had good microwave dielectric properties. However, this sintering temperature is too high to meet the requirement of low-temperature co-fired ceramics (LTCC). In this study, the effects of B2O3 additives and sintering temperature on the microstructure and microwave dielectric properties of LMT ceramics were investigated. The B2O3 additive forms a liquid phase during sintering, which decreases the sintering temperature from 1250°C to 925°C. The LMT ceramic with 8 wt% B2O3 sintered at 925°C for 4 h was found to exhibit optimum microwave dielectric properties: dielectric constant 15.16, quality factor 64,164 GHz, and temperature coefficient of resonant frequency -28.07 ppm/°C. Moreover, co-firing of the LMT ceramic with 8 wt% B2O3 and 20 wt% Ag powder demonstrated good chemical compatibility. Therefore, the LMT ceramics with 8 wt% B2O3 sintered at 925°C for 4 h is suitable for LTCC applications.  相似文献   

4.
Thermoelectric minerals have been found at Loei Province, in the northeastern part of Thailand. Local mineral specimens were prepared in the powders and bulk solids form by crushing, calcination and annealing, pressure and sintering, cutting and polishing. Mineral samples were used to analyze the composition and phase, determine the thermoelectric property and efficiency, design and construct a thermoelectric generator. Chemical composition and phase identification of powder samples were analyzed by the x-ray fluorescence (XRF) and x-ray diffraction (XRD), respectively. XRF and XRD results indicated that the mineral samples comprised the SO3-CaO-SiO2-others, Fe2O3-SO3-SiO2-others, Fe2O3-SiO2-others and Fe2O3-SiO2-CuO-others. From the thermoelectric property and efficiency determinations, the p-SO3-CaO-SiO2-others, p-Fe2O3-SO3-SiO2-others, n-Fe2O3-SiO2-others and n-Fe2O3-SiO2-CuO-others bulks were found to exhibit the thermoelectric figure of merit in orders of 10?14, 10?11, 10?14 and 10?13 K?1, respectively. A fabricated thermoelectric generator made from ten pairs of p-Fe2O3-SO3-SiO2-others and n-Fe2O3-SiO2-CuO-others legs that can be provided the open circuit voltage and short circuit current up to 48.30 mV and 0.14 μA for a temperature difference of 39.80 K at room temperature, respectively. While the internal resistance decreased and reached a value of 665 kΩ.  相似文献   

5.
Glasses in the ZnO-B2O3-MO3(M = W, Mo) ternary were examined as potential replacements to PbO-B2O3-SiO2-ZnO glass frits with the low firing temperature (500–600C) for the dielectric layer of a plasma display panels (PDPs). Glasses were melted in air at 950–1150C in a narrow region of the ternary using standard reagent grade materials. The glasses were evaluated for glass transition temperature (T g ), softening temperature (T d ), the coefficient of thermal expansion (CTE), dielectric constant (ε r ), and optical property. The glass transition temperature of the glasses varied between 470 and 560C. The coefficient of thermal expansion and the dielectric constant of the glasses were in the range of 5–8 × 10− 6/C and 8–10, respectively. The addition of MO3to ZnO-B2O3binary could induce the expansion of glass forming region, the reduction of T g and the increase in the CTE and the dielectric constant of the glasses. Also, the effect of the addition of MO3to ZnO-B2O3binary on the transmittance in the visible-light region (350–700 nm) was investigated.  相似文献   

6.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ε r ), high quality factor (Q × f), and small temperature coefficient of resonant frequency (TCF) are required for the application of chip passive components in wireless communication low temperature co-fired ceramics (LTCC). In the present study, the sintering behaviors and dielectric properties of Ba3Ti5Nb6O28 ceramics were investigated as a function of B2O3-CuO content. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ε r of 37, TCF of −12 ppm/C. The addition of B2O3-CuO was revealed to lower the sintering temperature of Ba3Ti5Nb6O28, 900C and to enhance the microwave dielectric properties: Q × f of 32,500 GHz, ε r of 40, TCF of 9 ppm/C. From the X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

7.
Piezoelectric properties of Al2O3-doped Pb(Mn1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics were investigated. The constituent phases, microstructure, electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants were analyzed. Diffraction peaks for (002) and (200) planes were identified by X-ray diffractometer for all the specimens doped with Al2O3. The highest sintered density of 7.8 g/cm3 was obtained for 0.2 wt% Al2O3-doped specimen. Grain size increased by doping Al2O3 up to 0.3 wt%, and it decreased by more doping. Electromechanical coupling factor, dielectric constant, piezoelectric charge and voltage constants increased by doping Al2O3 up to 0.2 wt%, and it decreased by more doping. This might result from the formation of oxygen vacancies due to defects in O2 − ion sites and the substitution of Al3+ ions.  相似文献   

8.
We have studied glass formable region in the Y2O3-CaO-Al2O3 system. An optimal composition for the amorphous phase formation was found in the pseudo-eutectic 12CaO⋅7Al2O3-CaYAlO4 system. An amorphous bulk plate of 10 × 25 × 1.8 mm was successfully fabricated using a simple molding technique. The fabricated glass plate showed an IR absorption edge at around 5.6 μm. The crystallization of the glass sample was observed above 890C by an X-ray diffraction (XRD) and Thermogravimetry and Differential thermal analysis (TG-DTA).  相似文献   

9.
Bi(Mg2/3Nb1/3)O3 was partially substituted into a Pb(Mg1/3Nb2/3)O3⋅PbTiO3 perovskite system and resultant changes in the phase developments and dielectric properties were investigated. Two major structures of columbite and rutile, along with a small fraction of Mg4Nb2O9 (α-Al2O3 structure), were developed in the B-site precursor system, whereas only a perovskite was observable after the addition of PbO and Bi2O3. The replacement of Bi for Pb resulted in a great reduction in the maximum dielectric constants as well as a substantial decrease in the dielectric maximum temperatures.  相似文献   

10.
Electrical properties and sintering behaviors of (1 − x)Pb(Zr0.5Ti0.5)O3-xPb(Cu0.33Nb0.67)O3 ((1 − x)PZT-xPCN, 0.04 ≤ x ≤ 0.32) ceramics were investigated as a function of PCN content and sintering temperature. For the specimens sintered at 1050C for 2 h, a single phase of perovskite structure was obtained up to x = 0.16, and the pyrochlore phase, Pb2Nb2O7 was detected for further substitution. The dielectric constant (ε r), electromechanical coupling factor (Kp) and the piezoelectric coefficient (d 33) increased up to x = 0.08 and then decreased. These results were due to the coexistence of tetragonal and rhombohedral phases in the composition of x = 0.08. With an increasing of PCN content, Curie temperature (Tc) decreased and the dielectric loss (tanδ) increased. Typically, εr of 1636, Kp of 64% and d33 of 473pC/N were obtained for the 0.92PZT-0.08PCN ceramics sintered at 950C for 2 h.  相似文献   

11.
Simultaneous conduction of oxide ions and electrons in solid ceramic systems provides the capability for oxygen transport under a concentration gradient without the need for an externally applied electric field. In the present study, ionic transference numbers have been measured in the ZrO2-5.8%Y2O3-10%CeO2 system by open circuit Emf measurements involving different metal/metal oxide electrodes. In order to correlate the ionic transference number with grain size, high-density ceramic discs of different grain sizes (50 nm–5 m) were prepared by sintering pressed powders at various temperatures and times. Hydrothermal synthesis was used to prepare nanocrystalline powders of the above material with uniform crystallite size (10 nm) and chemistry. Emf measurements on the samples suggested both ionic and electronic transport, the ionic transference number decreasing with increase in the grain size. This observation was attributed to an increase in the amount of continuous crystalline grain boundary phase in the ceramics as the grain size increased. The presence of crystalline silicate and zirconate phases in the grain boundary region was confirmed by electron microscopic imaging combined with microanalysis. In the large grain (5 m) ceramics, the ionic transference number decreased linearly with temperature. As the grain size decreased, a maximum occurred in the ionic transference number vs. temperature curve. This maximum became more pronounced at smaller grain sizes. Better grain-grain contact and the doping effect of trivalent Ce in the grain boundary core are proposed to explain this observation.  相似文献   

12.
Ferroelectric ceramics, SrBi2Nb2O9 (SBN), Sr0.8Cu0.2Bi2Nb2O9 (SCBN) and Sr0.8K0.1Na0.1Bi2Nb2O9 (SKNBN) were prepared by a solid state reaction process. X-ray diffraction analysis shows that the alkali and Cu almost diffuse into the SBN lattice to form a solid solution during sintering and some slight secondary phases was detected. The effect of alkali and Cu on dielectric properties of the SBN ceramics was discussed. The dielectric loss factor of (K,Na) doped SBN ceramics degraded considerably to 0.01 and their frequency and temperature stabilities were enhanced. The dielectric constant was enhanced by approximately 60% and the Curie temperature (Tc) was also improved for Cu doped SrBi2Nb2O9 ceramics.  相似文献   

13.
Recently the fabrication of ceramics starting from the appropriate melts of the educts has attracted increasing attention due to the easy shaping of work pieces and other advantages compared to powder sintering methods. We focused our interest on aluminum titanate (β-Al2TiO5) based ceramics which are interesting for high temperature applications due to the low thermal expansion coefficient. For this purpose we have investigated the titania-rich side of the Al2O3–TiO2 system (up to 50 mol% titania) under rapid cooling conditions with respect to the phase formation. By powder X-ray diffraction we could prove the solely formation of the known phases rutile and β-Al2TiO5 in agreement with the equilibrium phase diagram. Furthermore, powder pattern fitting has revealed the formation of solid solutions for both compounds.  相似文献   

14.
Ni/ (Ba,Sr)TiO3 PTC composite of low resistivity was fabricated by a solid state route. A mildly reducing sintering atmosphere was employed to avoid the oxidation of nickel. Metallic nickel is the main chemical state after sintering in the mildly reducing sintering atmosphere. With the increase in nickel amount, the room-temperature resistivity declines and the PTC effect worsens. The quantum mechanical tunneling effect at the Ni–(Ba,Sr)TiO3 interface is presumably the prime factor in the deterioration of the PTC effect. PbO–B2O3–ZnO–SiO2 glass was added to modify the interface between nickel and (Ba,Sr)TiO3 ceramics. The intergranular phase introduced by the glass has an amorphous structure and exists at the interfaces and triple junctions of (Ba,Sr)TiO3 grains and nickel grains. No obvious diffusion occurs at the interface between crystalline (Ba,Sr)TiO3 grain and the intergranular phase. Also the added-glass improves the distribution of metal phase. The proper glass addition screens interfacial electron tunneling effect and improves the composite electrical properties. An abundance of the intergranular phase due to excess glass will, however, result in high room-temperature resistivity. The influences of nickel amount and glass amount on the microstructure evolution and electrical properties were analyzed.  相似文献   

15.
Effect of Sb2O3 addition on the varistor characteristics of pyrochlore-free ZnO-Bi2O3-ZrO2-MtrO (Mtr = Mn, Co) system previously proposed has been studied. With Sb2O3 up to 0.1 mol%, a gradual enhancement of densification and the grain growth inhibition were seen in the system sintered between 900 and 1200C. In X-ray diffraction patterns, small amount of pyrochlore appeared in the specimens doped with Sb2O3 (>0.06 mol%), which is thought responsible for the sintering behavior. Enhanced values of non linear coefficient (α) were obtained in ZnO-Bi2O3-ZrO2 (ZBZ) doped with 0.001 mol% Sb2O3, but was leveled off at higher concentrations. In ZBZ added with MtrO (Mtr = Mn, Co), significant increase of nonlinear coefficient (α > 30) along with low leakage current (I L ≪ 100 μA/cm2) was attained. The α-enhancement effect of Sb2O3, however, was not observed in high-α ZBZ added with MtrO. As for degradation, addition of a trace amount (0.001 mol%) of Sb2O3 to ZBZMtr was efficient, especially in I L.  相似文献   

16.
We propose the “Flux-mediated epitaxy” as a novel concept for the growth of single crystalline films of incongruent, volatile, and high-temperature-melting compounds. In flux-mediated eptitaxy, by supplying materials precursors from the gas phase through the liquid flux films pre-deposited on the substrate, a quasi-thermodynamic equilibrium condition is obtained at the interface between the growing films and the flux films. This process has been demonstrated in this paper by fabricating ferroelectric Bi4Ti3O12 films, which has volatile Bi oxide. The most important step in this process is the selection of the right flux material, which is hard to predict due to the lack of an appropriate phase diagram. In order to overcome this problem, we have selected the combinatorial approach. A series of ternary flux libraries composed of two self-fluxes (Bi2O3 and Bi4Ti3O12) and a third impurity flux were fabricated on SrTiO3 (001) substrates. After that, stoichiometric Bi4Ti3O12 films were grown on each of these flux libraries at a temperature presumed to melt the flux. High-throughput characterization with the concurrent X-ray diffraction method resulted in the identification of CuO containing Bi2O3 as the flux material for the growth of single crystalline Bi4Ti3O12 films. Stoichiometric Bi4Ti3O12 films fabricated by using a novel CuO containing Bi2O3 are qualified to be single crystalline judging from their large grain size and the electrical properties equivalent to bulk single crystal’s.  相似文献   

17.
Ultrathin HfO2 gate dielectrics have been deposited on strained Si0.69Ge0.3C0.01 layers by rf magnetron sputtering. The polycrystalline HfO2 film with a physical thickness of ∼6.5 nm and an amorphous interfacial layer with a physical thickness of ∼2.5 nm have been observed by high resolution transmission electron microscopy (HRTEM). The electrical properties have been studied using metal-oxide-semiconductor (MOS) structures. The fabricated MOS capacitors on Si0.69 Ge0.3C0.01 show an equivalent oxide thickness (EOT) of 2.9 nm, with a low leakage current density of ∼4.5 × 10 − 7 A/cm2 at a gate voltage of –1.0 V. The fixed oxide charge and interface state densities are calculated to be 1.9 × 1012 cm− 2 and 3.3 × 10 11 cm− 2eV−1, respectively. The temperature dependent gate leakage characteristics has been studied to establish the current transport mechanism in high-k HfO2 gate dielectric to be Poole–Frenkel one. An improvement in electrical properties of HfO2 gate dielectrics has been observed after post deposition annealing in O2 and N2 environments.  相似文献   

18.
Nanocomposite ceramics containing a mixture of two ferroelectric phases, La-doped BaTi2O5 and BaTiO3, with carefully-controlled phase amounts and ceramic microstructure have temperature-independent permittivity and low dielectric loss over very wide temperature ranges: ɛ = 95 ± 10 from 25 to 600 °C; tan δ = 0.02(2) from 25 to 400 °C, measured at 100 kHz. Further optimisation of properties should be possible.  相似文献   

19.
ABSTRACT

We have studied the formation and characterization of Li2CO3 doped 0.7(Ba,Sr)TiO3-0.3MgO ceramics for the low temperature sintering and microwave applications. In this study 1 ~ 5 wt% of Li2CO3 was added to the 0.7(Ba,Sr)TiO3-0.3MgO ceramic materials to reduce the sintering temperature. The MgO contents, which added in this experiment, play a role of improving dielectric permittivity such as low frequency dispersion and low loss tangent.

In this paper, we will discuss the crystalline properties, dielectric properties, and the microstructures of Li2CO3 doped 0.7(Ba,Sr)TiO3- 0.3MgO ceramics. No pyro phase was observed in the X-ray diffraction method. Very weak frequency dispersion of dielectric permittivity was observed from the 1 kHz to 1 MHz range. Different grain sizes of Li2CO3 doped 0.7(Ba0.5Sr0.5)TiO3-0.3MgO ceramics were observed through the SEM methods.  相似文献   

20.
Microwave dielectric properties of low temperature sintering ZnNb2O6 ceramics doped with CuO-V2O5-Bi2O3 additions were investigated systematically. The co-doping of CuO, V2O5 and Bi2O3 can significantly lower the sintering temperature of ZnNb2O6 ceramics from 1150 to 870C. The secondary phase containing Cu, V, Bi and Zn was observed at grain boundary junctions, and the amount of secondary phase increased with increasing CuO-V2O5-Bi2O3 content. The dielectric properties at microwave frequencies (7–9 GHz) in this system exhibited a significant dependence on the relative density, content of additives and microstructure of the ceramics. The dielectric constant ( r) of ZnNb2O6 ceramics increased from 21.95 to 24.18 with increasing CuO-V2O5-Bi2O3 additions from 1.5 to 4.0 wt%. The quality factors (Q× f) of this system decreased with increasing CuO-V2O5-Bi2O3 content and ranged from 36118 to 67100 GHz for sintered ceramics, furthermore, all Q× f values of samples with CuO-V2O5-Bi2O3 additions are lower than that of un-doped ZnNb2O6 ceramics sintered at 1150C for 2 h. The temperature coefficient of resonant frequency ( f) changed from –33.16 to –25.96 ppm/C with increasing CuO-V2O5-Bi2O3 from 1.5 to 4.0 wt%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号