首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass fractions (total aboveground, branches and foliage) were estimated from a small footprint discrete-return LiDAR system in an unmanaged Mediterranean forest in central Spain. Several biomass estimation models based on LiDAR height, intensity or height combined with intensity data were explored. Raw intensity data were normalized to a standard range in order to remove the range dependence of the intensity signal. In general terms, intensity-based models provided more accurate predictions of the biomass fractions. Height models selected were mainly based on a percentile of the height distribution. Intensity models selected included variables that consider the percentage of the intensity accumulated at different height percentiles, which implicitly take into account the height distribution. The general models derived considering all species together were based on height combined with intensity data. These models yielded R2 values greater than 0.58 for the different biomass fractions considered and RMSE values of 28.89, 18.28 and 1.51 Mg ha1 for aboveground, branch and foliage biomass, respectively. Results greatly improved for species-specific models using the main species present in each plot, with R2 values greater than 0.85, 0.70 and 0.90 for black pine, Spanish juniper and Holm oak, respectively, and with lower RMSE for the biomass fractions. Reductions in LiDAR point density had only a small effect on the results obtained, except for those models based on a variation of the Canopy Reflection Sum, which was weighted by the mean point density. Based on the species-specific equations derived, Holm oak dominated plots showed the highest average carbon contained by aboveground biomass and branch biomass 44.66 and 31.42 Mg ha− 1 respectively, while for foliage biomass carbon, Spanish juniper showed the highest average value (3.04 Mg ha− 1).  相似文献   

2.
The relationship between reflectance and forest structure is investigated for 52 forest stands in Galloway. Height and basal area are most strongly correlated with reflectance in TM bands 3, 5 and 7 (R2 >= 0.77, P < 0.01). The strength of these relationships decreases substantially after canopy closure has occurred. Stem density cannot be predicted from canopy reflectance. Tree age can only be reliably predicted for areas where growth is uniform, which is rare in upland environments. Analysis of TM imagery provides a cost effective method of mapping certain canopy parameters provided that limited detail is required for older mature plantations with a closed canopy.  相似文献   

3.
Quantifying forest above ground carbon content using LiDAR remote sensing   总被引:1,自引:0,他引:1  
The UNFCCC and interest in the source of the missing terrestrial carbon sink are prompting research and development into methods for carbon accounting in forest ecosystems. Here we present a canopy height quantile-based approach for quantifying above ground carbon content (AGCC) in a temperate deciduous woodland, by means of a discrete-return, small-footprint airborne LiDAR. Fieldwork was conducted in Monks Wood National Nature Reserve UK to estimate the AGCC of five stands from forest mensuration and allometric relations. In parallel, a digital canopy height model (DCHM) and a digital terrain model (DTM) were derived from elevation measurements obtained by means of an Optech Airborne Laser Terrain Mapper 1210. A quantile-based approach was adopted to select a representative statistic of height distributions per plot. A forestry yield model was selected as a basis to estimate stemwood volume per plot from these heights metrics. Agreement of r=0.74 at the plot level was achieved between ground-based AGCC estimates and those derived from the DCHM. Using a 20×20 m grids superposed to the DCHM, the AGCC was estimated at the stand level and at the woodland level. At the stand level, the agreement between the plot data upscaled in proportion to area and the LiDAR estimates was r=0.85. At the woodland level, LiDAR estimates were nearly 24% lower than those from the upscaled plot data. This suggests that field-based approaches alone may not be adequate for carbon accounting in heterogeneous forests. Conversely, the LiDAR 20×20 m grid approach has an enhanced capability of monitoring the natural variability of AGCC across the woodland.  相似文献   

4.
In this study, a combination of low and high density airborne LiDAR and satellite SPOT-5 HRG data were used in conjunction with ground measurements of forest structure to parameterize four models for zero-plane displacement height d(m) and aerodynamic roughness length z0m(m), over cool-temperate forests in Heihe River basin, an arid region of Northwest China. For the whole study area, forest structural parameters including tree height (Ht) (m), first branch height (FBH) (m), crown width (CW) (m) and stand density (SD)(trees ha− 1) were derived by stepwise multiple linear regressions of ground-based forest measurements and height quantiles and fractional canopy cover (fc) derived from the low density LiDAR data. The high density LiDAR data, which covered a much smaller area than the low density LiDAR data, were used to relate SPOT-5's reflectance to the effective plant area index (PAIe) of the forest. This was done by linear spectrum decomposition and Li-Strahler geometric-optical models. The result of the SPOT-5 spectrum decomposition was applied to the whole area to calculate PAIe (and leaf area index LAI). Then, four roughness models were applied to the study area with these vegetation data derived from the LiDAR and SPOT-5 as input. For validation, measurements at an eddy covariance site in the study area were used. Finally, the four models were compared by plotting histograms of the accumulative distribution of modeled d and z0m in the study area. The results showed that the model using by frontal area index (FAI) produced best d estimate, and the model using both LAI and FAI generated the best z0m. Furthermore, all models performed much better when the representative tree height was Lorey's mean height instead of using an arithmetic mean.  相似文献   

5.
To effectively manage forested ecosystems an accurate characterization of species distribution is required. In this study we assess the utility of hyperspectral Airborne Imaging Spectrometer for Applications (AISA) imagery and small footprint discrete return Light Detection and Ranging (LiDAR) data for mapping 11 tree species in and around the Gulf Islands National Park Reserve, in coastal South-western Canada. Using hyperspectral imagery yielded producer's and user's accuracies for most species ranging from > 52-95.4 and > 63-87.8%, respectively. For species dominated by definable growth stages, pixel-level fusion of hyperspectral imagery with LiDAR-derived height and volumetric canopy profile data increased both producer's (+ 5.1-11.6%) and user's (+ 8.4-18.8%) accuracies. McNemar's tests confirmed that improvements in overall accuracies associated with the inclusion of LiDAR-derived structural information were statistically significant (p < 0.05). This methodology establishes a specific framework for mapping key species with greater detail and accuracy then is possible using conventional approaches (i.e., aerial photograph interpretation), or either technology on its own. Furthermore, in the study area, acquisition and processing costs were lower than a conventional aerial photograph interpretation campaign, making hyperspectral/LiDAR fusion a viable replacement technology.  相似文献   

6.
Meaningful relationships between forest structure attributes measured in representative field plots on the ground and remotely sensed data measured comprehensively across the same forested landscape facilitate the production of maps of forest attributes such as basal area (BA) and tree density (TD). Because imputation methods can efficiently predict multiple response variables simultaneously, they may be usefully applied to map several structural attributes at the species-level. We compared several approaches for imputing the response variables BA and TD, aggregated at the plot-scale and species-level, from topographic and canopy structure predictor variables derived from discrete-return airborne LiDAR data. The predictor and response variables were associated using imputation techniques based on normalized and unnormalized Euclidean distance, Mahalanobis distance, Independent Component Analysis (ICA), Canonical Correlation Analysis (aka Most Similar Neighbor, or MSN), Canonical Correspondence Analysis (aka Gradient Nearest Neighbor, or GNN), and Random Forest (RF). To compare and evaluate these approaches, we computed a scaled Root Mean Square Distance (RMSD) between observed and imputed plot-level BA and TD for 11 conifer species sampled in north-central Idaho. We found that RF produced the best results overall, especially after reducing the number of response variables to the most important species in each plot with regard to BA and TD. We concluded that RF was the most robust and flexible among the imputation methods we tested. We also concluded that canopy structure and topographic metrics derived from LiDAR surveys can be very useful for species-level imputation.  相似文献   

7.
Tree species identification is important for a variety of natural resource management and monitoring activities including riparian buffer characterization, wildfire risk assessment, biodiversity monitoring, and wildlife habitat assessment. Intensity data recorded for each laser point in a LIDAR system is related to the spectral reflectance of the target material and thus may be useful for differentiating materials and ultimately tree species. The aim of this study is to test if LIDAR intensity data can be used to differentiate tree species. Leaf-off and leaf-on LIDAR data were obtained in the Washington Park Arboretum, Seattle, Washington, USA. Field work was conducted to measure tree locations, tree species and heights, crown base heights, and crown diameters of individual trees for eight broadleaved species and seven coniferous species. LIDAR points from individual trees were identified using the field-measured tree location. Points from adjacent trees within a crown were excluded using a procedure to separate crown overlap. Mean intensity values of laser returns within individual tree crowns were compared between species. We found that the intensity values for different species were related not only to reflective properties of the vegetation, but also to a presence or absence of foliage and the arrangement of foliage and branches within individual tree crowns. The classification results for broadleaved and coniferous species using linear discriminant function with a cross validation suggests that the classification rate was higher using leaf-off data (83.4%) than using leaf-on data (73.1%), with highest (90.6%) when combining these two LIDAR data sets. The result also indicates that different ranges of intensity values between two LIDAR datasets didn't affect the result of discriminant functions. Overall results indicate that some species and species groups can be differentiated using LIDAR intensity data and implies the potential of combining two LIDAR datasets for one study.  相似文献   

8.
We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also generated in 1-m layers, and regressed on CBD estimates calculated for 1-m layers from field plots to predict three-dimensional canopy fuel loading. We then produced maps of canopy fuel metrics for three 9 km2 forested areas in the Pinelands.Correlations for standard LiDAR-derived parameters between the two LiDAR systems were all highly significant, with correlation coefficients ranging between 0.82 and 0.98. Stepwise linear regression models developed from the profiling LiDAR data predicted maximum CBD and CFW (r2 = 0.94 and 0.92) better than those developed from the scanning LiDAR data (r2 = 0.83 and 0.71, respectively). A single regression for the prediction of CBD at all canopy layers had r2 values of 0.93 and 0.82 for the profiling and scanning datasets, respectively. Individual bin regressions for predicting CBD at each canopy height layer were also highly significant at most canopy heights, with r2 values for each layer ranging between 0.36 and 0.89, and 0.44 and 0.99 for the profiling and scanning datasets, respectively. Relationships were poorest mid-canopy, where highest average values and highest variability in fuel loading occurred. Fit of data to Gaussian distributions of canopy height profiles facilitated a simpler expression of these parameters for analysis and mapping purposes, with overall r2 values of 0.86 and 0.92 for the profiling and scanning LiDAR datasets, respectively. Our research demonstrates that LiDAR data can be used to generate accurate, three-dimensional representations of canopy structure and fuel loading at high spatial resolution by linking 1-m return height profiles to biometric estimates from field plots.  相似文献   

9.
激光雷达遥感在文化遗产保护中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
激光雷达(LiDAR)即激光探测与测距,提供了一种快速、精确、高效地获取三维空间数据的方法。激光雷达技术为文化遗产的保护和管理提供了新的途径和方法。首先介绍激光雷达技术的原理和特点,然后详细论述激光雷达技术在文化遗产保护和管理中的应用,最后对激光雷达在文化遗产保护中存在的问题进行了分析并提出解决方案,为文化遗产保护和研究者提供新的思路和方法。  相似文献   

10.
11.
机载LiDAR数据的LZD航带平差   总被引:1,自引:0,他引:1       下载免费PDF全文
系统误差是影响机载LiDAR系统精度的主要因素,因而消除或削弱系统误差影响、提高数据精度具有重要理论意义和工程实用价值。提出基于最小高程差(LZD)的机载LiDAR航带平差方法,并通过引入高斯-马尔柯夫模型提高了平差精度。实验部分考察了引入高斯-马尔柯夫模型的必要性及算法精度。实验结果表明:引入高斯-马尔柯夫模型可有效地提高算法精度;使用LZD进行机载LiDAR航带平差获取的结果均可以满足工程生产的精度需求;与商业软件TerraMatch相比,LZD的精度和TerraMatch的精度相当。  相似文献   

12.
Traditional field-based lithological mapping can be a time-consuming, costly and challenging endeavour when large areas need to be investigated, where terrain is remote and difficult to access and where the geology is highly variable over short distances. Consequently, rock units are often mapped at coarse-scales, resulting in lithological maps that have generalised contacts which in many cases are inaccurately located. Remote sensing data, such as aerial photographs and satellite imagery are commonly incorporated into geological mapping programmes to obtain geological information that is best revealed by overhead perspectives. However, spatial and spectral limitations of the imagery and dense vegetation cover can limit the utility of traditional remote sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a remote sensing tool offers the potential to provide a novel solution to these problems because accurate and high-resolution topographic data can be acquired in either forested or non-forested terrain, allowing discrimination of individual rock types that typically have distinct topographic characteristics. This study assesses the efficacy of airborne LiDAR as a tool for detailed lithological mapping in the upper section of the Troodos ophiolite, Cyprus. Morphometric variables (including slope, curvature and surface roughness) were derived from a 4 m digital terrain model in order to quantify the topographic characteristics of four principal lithologies found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was then employed to classify the lithological units based upon these variables. The algorithm presented here was used to generate a detailed lithological map which defines lithological contacts much more accurately than the best existing geological map. In addition, a separate map of classification uncertainty highlights potential follow-up targets for ground-based verification. The results of this study demonstrate the significant potential of airborne LiDAR for lithological discrimination and rapid generation of detailed lithological maps, as a contribution to conventional geological mapping programmes.  相似文献   

13.
Tea (Camellia sp.) and its plantation are very important on a worldwide scale as it is the second-most consumed beverage after water. Therefore, it becomes necessary to map the widely distributed tea plantations under various geographies and conditions. Remote-sensing techniques are effective tools to map and monitor the impact of tea plantation on land-use/land-cover (LULC). Remote sensing of tea plantations suffers from spectral mixing as these plantation areas are generally surrounded by similar types of green vegetation such as orchards and bushes. This problem is mainly tied to planting style, topography, and spectral characteristics of tea plantations, and the side effects are observed as low classification accuracies after the classification process. In this study, to overcome this problem, a three-step approach was proposed and implemented on a test area with high slope. As a first step, spectral and multi-scale textural features based on Gabor filters were extracted from high resolution multispectral digital aerial images. Similarly, based on the wavelength range of the sensor, a modified normalized difference vegetation index (MNDVI) was applied to distinguish the green vegetation cover from other LULCs. The second step involves the classification of multidimensional textural and spectral feature combinations using a support vector machine (SVM) algorithm. As a final step, two different techniques were applied for evaluating classification accuracy. The first one is a traditional site-specific accuracy assessment based on a confusion matrix calculating statistical metrics for different feature combinations. The overall accuracy and kappa values were calculated as 93.68% and 0.92, 93.82% and 0.92, and 97.40% and 0.97 for LULC maps produced by red, green, and blue (RGB), RGB + MNDVI, and RGB + MNDVI + Gabor features, respectively. The second accuracy assessment technique was the pattern-based accuracy assessment. The technique involves polygon-based fuzzy local matching. Three comparison maps showing local matching indices were obtained and used to compute the global matching index (g) for LULC maps of each feature set combination. The g values were g(RGB) (0.745), g(RGB+MNDVI) (0.745), and g(RGB+MNDVI+Gabor) (0.765) for comparison maps. Finally, based on accuracy assessment metrics, the study area was successfully classified and tea plantation features were extracted with high accuracy.  相似文献   

14.
Development of a pit filling algorithm for LiDAR canopy height models   总被引:1,自引:0,他引:1  
LiDAR canopy height models (CHMs) can exhibit unnatural looking holes or pits, i.e., pixels with a much lower digital number than their immediate neighbors. These artifacts may be caused by a combination of factors, from data acquisition to post-processing, that not only result in a noisy appearance to the CHM but may also limit semi-automated tree-crown delineation and lead to errors in biomass estimates. We present a highly effective semi-automated pit filling algorithm that interactively detects data pits based on a simple user-defined threshold, and then fills them with a value derived from their neighborhood. We briefly describe this algorithm and its graphical user interface, and show its result in a LiDAR CHM populated with data pits. This method can be rapidly applied to any CHM with minimal user interaction. Visualization confirms that our method effectively and quickly removes data pits.  相似文献   

15.
Delineation of individual deciduous trees with Light Detection and Ranging (LiDAR) data has long been sought for accurate forest inventory in temperate forests. Previous attempts mainly focused on high-density LiDAR data to obtain reliable delineation results, which may have limited applications due to the high cost and low availability of such data. Here, the feasibility of individual deciduous tree delineation with low-density LiDAR data was examined using a point-density-based algorithm. First a high-resolution point density model (PDM) was developed from low-density LiDAR point cloud to locate individual trees through the horizontal spatial distribution of LiDAR points. Then, individual tree crowns and associated attributes were delineated with a 2D marker-controlled watershed segmentation. Additionally, the PDM-based approach was compared with a conventional canopy height model (CHM) based delineation. The results demonstrated that the PDM-based approach produced an 89% detection accuracy to identify deciduous trees in our study area. The tree attributes derived from the PDM-based algorithm explained 81% and 83% of tree height and crown width variations of forest stands, respectively. The conventional CHM-based tree attributes, on the other hand, could explain only 71% and 66% of tree height and crown width, respectively. Our results suggest that the application of the PDM-based individual tree identification in deciduous forests with low-density LiDAR data is feasible and has relatively high accuracy to predict tree height and crown width, which are highly desired in large-scale forest inventory and analysis.  相似文献   

16.
Abstract

The use of SPOT-simulation data to identify and delineate the structure of effluent plumes in a tidal estuary is considered. Results are presented to demonstrate the capability of the data to locate the effluent discharged from short coastal outfalls and a long sea outfall, respectively, in the Firth of Forth. In addition, coastal water movements are revealed and the processed images are interpreted in terms of correlations between suspended sediment distributions and estuarine bathymetry variations. The relationship between the present results and previous studies at the same site are discussed.  相似文献   

17.
Light detecting and ranging(LiDAR)technology has become an efective way to generate highresolution digital terrain models(DTMs).To generate DTMs,point measurements from non-ground features,such as buildings,vegetation and vehicles,have to be identifed and removed while preserving the terrain points.This paper proposes an efcient mathematical morphology-based multi-level flter to generate DTMs from airborne LiDAR data.Preliminary non-ground points are frst identifed with the characteristics of the multiecho airborne LiDAR data.The localized mathematical morphology opening operations are then immediately applied to the remaining points.By gradually increasing the window size of the flter and using a dynamic critical gradient threshold,the non-ground points are removed,while the ground points are preserved.Eight samples were chosen from eight sites provided with the ISPRS Commission III,Working Group 3,to evaluate the accuracy of our algorithm.Both the qualitative and quantitative experiment analyses show that our morphologybased multi-level flter method achieves promising results,not only in flat urban areas but also in rural areas,especially in preserving complex terrain details,while non-ground spatial objects are removed.  相似文献   

18.
Tree and shrub species composition and vegetation structure are key components influencing the quality of woodland or forest habitat for a wide range of organisms. This paper investigates the unique thematic classes that can be derived using integrated airborne LiDAR and spectral data. The study area consists of a heterogeneous, semi‐natural broadleaf woodland on an ancient site and homogeneous broadleaf and conifer woodland on an adjoining plantation. A parcel‐based unsupervised classification approach was employed, using the first two Principal Components from 12 selected wavebands of HyMap data and a Digital Canopy Height Model extracted from LiDAR data. The resultant 52 data clusters were amalgamated into 10 distinct thematic classes that contain information on species composition and vegetation structure. The thematic classes are relevant to the National Vegetation Classification (NVC) scheme for woodlands and scrub of Great Britain. Furthermore, in distinguishing structural subdivisions within the species‐based NVC classes, the thematic classification provides greater information for quantifying woodland habitat. The classes show degeneration from and regeneration to mature woodland communities and thus reflect the underlying processes of vegetation succession and woodland management. This thematic classification is ecologically relevant and is a forward development in woodland maps created from remote sensing data.  相似文献   

19.
The availability of a wide range of satellite measurements of environmental variables at different spatial and temporal resolutions, together with an increasing number of digitized and georeferenced species occurrences, has created the opportunity to model and monitor species geographic distribution and richness at regional to continental scales. In this paper, we examine the application of recently developed global data products from satellite observations in modeling the potential distribution of tree species and diversity in the Amazon basin. We use data from satellite sensors, including MODIS, QSCAT, SRTM, and TRMM, to develop different environmental variables related to vegetation, landscape, and climate. These variables are used in a maximum entropy method (Maxent) to model the geographical distribution of five commercial trees and to classify the patterns of tree alpha-diversity in the Amazon basin. Maxent simulations are analyzed using binomial tests of omission rates and the area under the receiver operating characteristics (ROC) curves to examine the model performance, the accuracy of geographic distributions, and the significance of environmental variables for discriminating suitable habitats. To evaluate the importance of satellite data, we used the Maxent jackknife test to quantify the training gains from data layers and to compare the results with model simulations using climate-only data. For all species and tree alpha-diversity, modeled distributions are in agreement with historical data and field observations. The results compare with climate-derived patterns, but provide better spatial resolution and detailed information on the habitat characteristics. Among satellite data products, QSCAT backscatter, representing canopy moisture and roughness, and MODIS leaf area index (LAI) are the most important variables in almost all cases. Model simulations suggest that climate and remote sensing results are complementary and that the best distribution patterns can be achieved when the two data sets are combined.  相似文献   

20.
This paper presents a method for mapping fuel types using LiDAR and multispectral data. A two-phase classification method is proposed to discriminate the fuel classes of the Prometheus classification system, which is adapted to the ecological characteristics of the European Mediterranean basin. The first step mapped the main fuel groups, namely grass, shrub and tree, as well as non-fuel classes. This phase was carried out using a Support Vector Machine (SVM) classification combining LiDAR and multispectral data. The overall accuracy of this classification was 92.8% with a kappa coefficient of 0.9. The second phase of the proposed method focused on discriminating additional fuel categories based on vertical information provided by the LiDAR measurements. Decision rules were applied to the output of the SVM classification based on the mean height of LiDAR returns and the vertical distribution of fuels, described by the relative LiDAR point density in different height intervals. The final fuel type classification yielded an overall accuracy of 88.24% with a kappa coefficient of 0.86. Some confusion was observed between fuel types 7 (dense tree cover presenting vertical continuity with understory vegetation) and 5 (trees with less than 30% of shrub cover) in some areas covered by Holm oak, which showed low LiDAR pulses penetration so that the understory vegetation was not correctly sampled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号