首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multi fuel engine when fueled with waste cooking oil methyl ester and its 20%, 40%, 60% and 80% blends with diesel (on a volume basis) are investigated and compared with standard diesel. The suitability of waste cooking oil methyl ester as a biofuel has been established in this study. Bio diesel produced from waste sun flower oil by transesterification process has been used in this study. Experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 18:1, 19:1, 20:1, 21:1 and 22:1. The impact of compression ratio on fuel consumption, combustion pressures and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for waste cooking oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions.  相似文献   

2.
Alcohols extensively used in internal combustion engines are important renewable and sustainable energy resources from environmental and economical perspectives. Besides, bio production of alcohols decreases consumption of fossil‐based fuels. Although there are many studies with regards to the use of lower alcohols such as methanol and ethanol in internal combustion engines, there are a limited number of investigations with higher alcohols. Higher alcohols such as propanol, n‐butanol, and 1‐pentanol are part of the next generation of biofuels, given they provide better fuel properties than lower alcohols. Biodiesel–higher alcohol blends can be used in diesel engines without any engine modification but need to be tested under various engine conditions with long periods in order to evaluate their impacts on engine performance and environmental pollutants. The objective of this study was to evaluate the effect of using propanol, n‐butanol, and 1‐pentanol in waste oil methyl ester (B100) on engine performance and exhaust emissions of a diesel engine running at different loads (0, 3, 6, and 9 kW) with a fixed engine speed (1800 rpm). Test fuel blends were prepared by adding propanol, n‐butanol, and 1‐pentanol (10 vol.%) into waste oil methyl ester to achieve blends of B90Pr10, B90nB10, and B90Pn10, respectively. According to engine performance and exhaust emissions results, the addition of propanol, n‐butanol, and 1‐pentanol to B100 had the effect of increasing brake specific fuel consumption and exhaust gas temperatures. The brake thermal efficiency (BTE) decreased for B90Pr10 and B90nB10, while B90Pn10 showed a slight increase in BTE as compared with B100. When compared with B100, B90Pr10, B90nB10, and B90Pn10 decreased carbon monoxide emissions at lower loads while it increased slightly at 9 kW load. The decrement in oxides of nitrogen emission was observed at whole loads for B90Pr10, B90nB10, and B90Pn10 compared with B100. When considering all loads, B90Pn10 presented the best mean hydrocarbon emission with a reduction of 45.41%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

4.
This study deals with artificial neural network (ANN) modeling of a diesel engine using waste cooking biodiesel fuel to predict the brake power, torque, specific fuel consumption and exhaust emissions of the engine. To acquire data for training and testing the proposed ANN, a two cylinders, four-stroke diesel engine was fuelled with waste vegetable cooking biodiesel and diesel fuel blends and operated at different engine speeds. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The experimental results revealed that blends of waste vegetable oil methyl ester with diesel fuel provide better engine performance and improved emission characteristics. Using some of the experimental data for training, an ANN model was developed based on standard Back-Propagation algorithm for the engine. Multi layer perception network (MLP) was used for non-linear mapping between the input and output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. It was observed that the ANN model can predict the engine performance and exhaust emissions quite well with correlation coefficient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine torque, SFC, CO and HC emissions, respectively. The prediction MSE (Mean Square Error) error was between the desired outputs as measured values and the simulated values were obtained as 0.0004 by the model.  相似文献   

5.
Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%/20%; and 50%/50% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%/2.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition-accelerator additive for diesel fuel.  相似文献   

6.
An experimental study is conducted to evaluate and compare the use of a diesel fuel supplement, specifically a 25/75% and a 50/50% blend of waste olive oil and commercial diesel fuel, in a four-stroke, DI (Direct Injection) diesel engine and in a four-stroke, IDI (Indirect Injection) diesel engine having a swirl-combustion chamber. The influence of the blends (diesel fuel+olive oil), for a large range of loads, has been examined on fuel consumption, maximum pressure, exhaust temperature, exhaust smokiness and exhaust-gas emissions such as nitrogen oxides (NOx), hydrocarbons (HC) and carbon monoxide (CO). The differences in the measured performance and exhaust-emission parameters, from the baseline operation of either engine, are determined and compared. The study shows, for both the DI and IDI engines, a small penalty in specific fuel consumption, a moderate increase in exhaust smokiness and essentially unaltered maximum pressures and exhaust temperatures when using the blends. Also, for both the IDI and DI engines when using the blends, the study shows moderate decreases in emitted nitrogen oxides and increases in hydrocarbons as well as negligible increases in emitted carbon monoxide. Theoretical aspects of diesel engine combustion are used to aid the interpretation of the observed engines' behaviour.  相似文献   

7.
In this study, the exhaust emissions of an unmodified diesel engine fueled with methyl ester of waste frying palm-oil (biodiesel) and its blends with petroleum based diesel fuel (PBDF) were investigated at the full load-variable speed condition. The relationships between the fuel properties and the air–fuel equivalence ratio, fuel line pressure, start of injection (SOI) timing, and ignition delay were also discussed to explain their effects on the emissions. The obtained test results were compared with the reference values which were determined by using PBDF. The results showed that when biodiesel was used in the test engine, the fuel line pressure increased while air–fuel equivalence ratio and ignition delay decreased. These behaviors affected the combustion phenomena of biodiesel which caused to reduction 57% in carbon monoxide (CO) emission, about 40% in unburned hydrocarbon (HC) emission and about 23% in smoke opacity when compared with PBDF. However, NOx and CO2 emissions of the biodiesel have showed different behaviors in terms of the engine speed.  相似文献   

8.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

9.
The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.  相似文献   

10.
In this study, we have evaluated the influence of Zinc oxide and Titanium dioxide nanoparticles addition in hydrogen-corn blended biodiesel combustion performance and exhaust emission using a dual direct-injection compression-ignition engine. 5% of Zinc oxide and Titanium dioxide were mixed with corn-vegetable oil methyl ester under ultrasonication. Results revealed that the addition of nanoparticles improved the Brake power by 22% (Titanium dioxide) and 4% (Zinc oxide). Consequently, 18% and 15% reduction in brake specific fuel consumption indeed at 50% load compared to neat diesel. Furthermore, the addition of nanoparticles also resulted in a reduction of emission values of 37% and 26% in hydrocarbon, 26% and 36% for carbon monoxide, 19% and 15% in nitrogen oxide and followed by 13% and 8% of smoke opacity. Therefore, the results proved that hydrogen-corn biodiesel blended with nanoparticles additive reports a positive effect on compression-ignition diesel engines without major modifications in engine.  相似文献   

11.
This study aims at producing hydroxy (HHO) gas using a dry cell electrolysis setup and utilising it along with orange oil in a diesel engine. First an electrolyser was designed considering the optimised values of the material (SS316L), electrolyte (NaOH), and electrode gap (2 mm). Then the biodiesel obtained from the waste orange peels, after transesterification, were blended with diesel at 25 and 50% by vol. The HHO gas was produced by the water electrolysis method by a plate-type electrolyser having a maximum production rate of 2.5 LPM with NaOH as the electrolyte. HHO gas was inducted through the inlet manifold along with the fresh air at a constant rate of 2 LPM with both the biodiesel blends. The performance, emission, and combustion outcomes of the single cylinder diesel engine for different load conditions (0–100%) were tested for all the blends with and without HHO addition. The results showed a considerable increase in brake thermal efficiency of 1.54% at full load condition, with a noticeable decrease in fuel consumption by 11.1% compared to conventional diesel fuel, was achieved for the O25 blend with HHO induction. Moreover, emissions like hydrocarbon, carbon monoxide and smoke were reduced by 17.6, 29.5, and 12.1%, respectively. However, the improvement in combustion outcomes led to the increase in nitrogen oxides emission by 9.67%. This study helped to understand the production process of HHO gas by dry cell electrolyser and its effect on the blend of orange oil methyl ester and diesel in dual-fuel mode.  相似文献   

12.
The present study investigated the effect of compression ratio (CR) with the use of exhaust gas recirculation (EGR) technology on the performance of combustion characteristics at different CRs and engine loads; the brake thermal efficiency (BTE), specific fuel consumption (SFC), volumetric efficiency (VOL.EFF), exhaust gas temperature, carbon dioxide emission (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and oxygen content (O2). The single-cylinder, four-stroke compression ignition engine was run on a mixture of diesel and biodiesel prepared from Iraqi waste cooking oil at (B0, B10, B20, and B30). A comparison has been achieved for these combustion characteristics at different blends, load, and CRs (14.5, 15.5, and 16.5) at 1500 rpm constant engine speed. The transesterification process is used to produce biodiesel and ASTM standards have been used to determine the physical and chemical properties of biodiesel and compare them to net diesel fuel. The preliminary conducting tests indicated that engine performance and emissions improved with the B20 mixture. Experimental test results showed an increase in BTE when CR increased by 17% and SFC increased by 23%. It also found a higher VOL.EFF by 6% at higher pressure ratios. A continuous decrease in BTE values and an increase in SFC were sustained when the percentage of biodiesel in the mixture was increased. Emissions of carbon dioxide, HC, and NOx increased by 12%, 50%, and 40%, respectively, as CR reached high values. NOx increased with the addition of biodiesel to 35%, which necessitated the use of EGR technology at rates of 5% and 10%. The results indicated that the best results were obtained in the case of running the engine with a mixing ratio of B20 with the addition of 10% EGR, NOx decreased by 47% against a slight increase in other emissions.  相似文献   

13.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

14.
Hermetia illucens larvae oil (HILO) is among biofuel feedstock from insects that has high potential to reduce dependency on petroleum resources. The present paper is motivated by the need to critically examine the effect of HILO mixed with diesel fuel (DF) on combustion, engine performance, and emission characteristics of a single cylinder direct injection (DI) compression ignition (CI) engine. The experiment was performed at a constant speed of 1500 rpm under various engine loads. The results revealed that the in-cylinder pressure, heat release rate (HRR), and the ignition delay (ID) were reduced by an average of 3.32%, 12.89%, and 4.36%, respectively. The brake specific fuel consumption (BSFC) and exhaust gas temperature (EGT) increased considerably at all engine loads. The brake thermal efficiency (BTE) was discovered to be lower by 11.47% compared to DF. The finding also shows that carbon monoxide (CO), carbon dioxide (CO2), and unburned hydrocarbon (UHC) emissions increased with the addition of HILO. The nitrogen oxides (NOx) emission reduced by 19.80% compared to DF at all the engine loads. Overall, this study concluded the potential of HILO in CI engine as a promising renewable and environmentally friendly resource for the better earth.  相似文献   

15.
The study includes the use of alcohols in conjunction with diesel as a binary fuel and biodiesel. In addition, this study was conducted on quaternary fuels (premium diesel, waste cooking biodiesel, n-butanol, and bioethanol), including Fe3O4 (iron(III) oxide)-doped reduced graphene oxide (rGO) nanocomposite to reduce the use of fossil fuels, their cost, and energy demand. It includes 10% bioethanol, 5%–20% n-butanol, 25 ppm Fe3O4-doped rGO nanocomposite, and 20% and 100% waste cooking biodiesel, all of which have been tested in a diesel engine to ensure that they are suitable for use. The findings were compared to those obtained with premium diesel, ranging from 50% to 100% at full engine load conditions. In comparison to 100% premium diesel fuel, the fuel blend (Blend G) had 37.50% brake thermal efficiency and 0.46% (brake-specific energy consumption), as well as lower rates of 316.2% carbon monoxide, 198.80% hydrocarbon, and 80.01% smoke with 28.10% higher oxides of nitrogen (NOx). Adding 20% n-butanol to premium diesel, as well as waste cooking biodiesel, bioethanol, and Fe3O4-doped rGO nanocomposite fuel blends, was used in this study to improve the performance of the diesel engine and reduce some of the NOx emissions. In the near future, these fuel blends may be a viable alternative combination for the diesel engine.  相似文献   

16.
The aims of this study is to investigate the performance, combustion and exhaust emissions of a single-cylinder, air cooled, direct injection (DI), compression ignition engine using biodiesel from non-edible feedstock. In this work, biodiesel (B100) used to lead this investigation is Citrullus colocynthis L. methyl ester (CCME) and its blends B30 with diesel fuel. The biodiesel is produced via alkaline-catalyzed transesterification process using methanol (6:1 M ratio), 1% of sodium hydroxide at the reaction temperature of 60 °C for 1 h. The important physical and chemical properties of CCME are close to those of diesel fuel. Fuels (diesel fuel, B100 and B30) were tested on a DI diesel engine at 1500 rpm for various power outputs. The results indicated that B100 and B30 exhibit the same combustion characteristics compared to diesel fuel. However, B100 and B30 display earlier start of combustion. At lower engine loads, the peaks of cylinder pressure and heat release rate (HRR) were higher for B30 than B100 and diesel fuel during premixed combustion period. At higher engine loads the peaks of cylinder pressure was higher for B100 than B30 and diesel fuel, but the HRR during diffusion combustion is more considerable than diesel fuel. The brake specific fuel consumption (BSFC) was higher for B100 than diesel fuel at all engine loads while B30 exhibited comparable trends. The thermal efficiency is slightly higher for B100 than B30 and diesel fuel at low loads and increase for B30 at full loads.B30 and B100 provided a higher reduction of hydrocarbons emissions up to 50% for B100. Nitrogen oxides and particulate matter emissions were also reduced.  相似文献   

17.
Honne oil methyl ester (HOME) is produced from a nonedible vegetable oil, namely, honne oil, available abundantly in India. It has remained as an untapped new possible source of alternative fuel that can be used for diesel engines. The present research is aimed at investigating experimentally the performance, exhaust emission, and combustion characteristics of a direct injection diesel engine (single cylinder, water cooled) typically used in agricultural sector over the entire load range when fuelled with HOME and diesel fuel blends, HM20 (20% HOME + 80% diesel fuel)–HM100. The properties of these blends are found to be comparable with diesel fuel conforming to the American and European standards. The combustion parameters of HM20 are found to be slightly better than neat diesel (ND). For other blend ratios, these combustion parameters deviated compared with ND. The performance (brake thermal efficiency (BTE), brake‐specific fuel consumption, and exhaust gas temperature) of HM20 is better than ND. For other blend ratios, BTE is inferior compared with ND. The emissions (CO and SO) of HM20–HM100, throughout the entire load range, are dropped significantly compared with ND. Unburned hydrocarbon emissions of HM20–HM40, throughout the entire load range, is slightly decreased, whereas for other blend ratios, it is increased compared with ND. NOx emissions of HM20, throughout the entire load range, is slightly increased, whereas for other blend ratios, it is slightly decreased. The reductions in exhaust emissions together with increase in BTE made the blend HM20 a suitable alternative fuel for diesel fuel and thus could help in controlling air pollution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents the results of experimental work carried out to evaluate the combustion performance and exhaust emission characteristics of turpentine oil fuel (TPOF) blended with conventional diesel fuel (DF) fueled in a diesel engine. Turpentine oil derived from pyrolysis mechanism or resin obtained from pine tree dissolved in a volatile liquid can be used as a bio-fuel due to its properties. The test engine was fully instrumented to provide all the required measurements for determination of the needed combustion, performance and exhaust emission variables. The physical and chemical properties of the test fuels were earlier determined in accordance to the ASTM standards.ResultsIndicated that the engine operating on turpentine oil fuel at manufacture's injection pressure – time setting (20.5 MPa and 23° BTDC) had lower carbon monoxide (CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx), smoke level and particulate matter. Further the results showed that the addition of 30% TPOF with DF produced higher brake power and net heat release rate with a net reduction in exhaust emissions such as CO, HC, NOx, smoke and particulate matter. Above 30% TPOF blends, such as 40% and 50% TPOF blends, developed lower brake power and net heat release rate were noted due to the fuels lower calorific value; nevertheless, reduced emissions were still noted.  相似文献   

19.
This paper reports about the discharge characteristics of jatropha biodiesel blends along with producer gas from waste babul wood pieces in a dual-fuel direct injection diesel engine. The biodiesel blends were examined in both individual and dual-fuel modes at a constant gas flow rate of 21.69 kg/h at all loading conditions. From the results it may be concluded that oxides of nitrogen and smoke opacity reduce, whereas carbon dioxide (CO2), carbon monoxide (CO), and hydrocarbon (HC) increase for all test fuels in dual-fuel operation compared with that of a single style at different loading conditions. The fuel blends show better emissions than that of diesel in both the ways.  相似文献   

20.
Compression ignition (CI) engines used in the transportation sector operates on fossil diesel and is one of the biggest causes of air pollution. Numerous studies were carried out over last two decades to substitute the fossil diesel with biofuels so that the net carbon dioxide (CO2) emission can be minimized. However, the engine performance with these fuel was sub-standard and there were many long-term issues. Therefore, many researchers inducted hydrogen along with the biofuels. The present study gives an outlook on the effect of hydrogen addition with biodiesel/vegetable oil from various sources in CI engine. Engine parameters (brake thermal efficiency, brake specific fuel consumption), combustion parameters (in-cylinder pressure and heat release rate) and emission parameters (unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) and smoke emissions) were evaluated in detail. The results show that hydrogen induction in general improves the engine performance as compared to biodiesel/vegetable oil but it is similar/lower than diesel. Except NOx emissions all other emissions showed a decreasing trend with hydrogen addition. To counter this effect numerous after-treatment systems like selective catalytic reduction (SCR), exhaust gas recirculation (EGR), selective non-catalytic reduction system (SNCR) and non-selective catalytic reduction system (NSCR) were proposed by researchers which were also studied in this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号