首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.  相似文献   

2.
目的研究人参皂苷Rh2(G-Rh2)对人胃癌细胞SGC-7901的影响。方法采用MTT法检测G-Rh2对SGC-7901细胞存活率的影响;流式细胞分析法检测凋亡小体的含量;免疫印迹技术及体外Caspase-3/-7活力测定方法检测Caspase的激活状态。结果G-Rh2对SGC-7901细胞生长有明显的抑制作用,且呈量-效关系,IC50为9.3μg/ml。7.5μg/mlG-Rh2作用SGC-7901细胞24h,凋亡细胞数量为6.97%。7.5μg/mlG-Rh2作用SGC-7901细胞20h,出现多聚(ADP-核糖)聚合酶[poly(ADP-ribose)polymerase,PARP]断裂,Caspase-3/-7活力开始出现,并随作用时间的延长而增强。结论G-Rh2诱导Caspase参与SGC-7901细胞凋亡。  相似文献   

3.
The novel compound JRS-15 was obtained through the chemical modification of xylocydine. JRS-15 exhibited much stronger cytotoxic and pro-apoptotic activity than its parent compound in various cancer cell lines, with IC50 values in HeLa, HepG2, SK-HEP-1, PC-3M and A549 cells ranging from 12.42 to 28.25 μM. In addition, it is more potent for killing cancer than non-cancerous cells. Mechanistic studies showed that JRS-15 treatment arrested cell cycle at the G1/S phase, which further triggered the translocation of Bax and Bak to the mitochondria, resulting in mitochondrial membrane potential (MMP) depolarization and the subsequent release of cytochrome c and the second mitochondria-derived activator of caspase (Smac). The sequential activation of caspase-9 and caspase-3/7 and the cleavage of poly (ADP-ribose) polymerase (PARP) were observed following these mitochondrial events. Caspase-8, an initiator caspase that is required to activate the membrane receptor-mediated extrinsic apoptosis pathway was not activated in JRS-15-treated cells. Further analysis showed that the levels of the anti-apoptotic proteins Bcl-xL and XIAP were significantly reduced upon JRS-15 treatment. Furthermore, the caspase-9 inhibitor z-LEHD-fmk, the pan-caspase inhibitor z-VAD-fmk, and Bcl-xL or XIAP overexpression all effectively prevented JRS-15-induced apoptosis. Taken together, these results indicate that JRS-15 induces cancer cell apoptosis by regulating multiple apoptosis-related proteins, and this compound may therefore be a good candidate reagent for anticancer therapy.  相似文献   

4.
Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP‐1 monocytes and adherent THP‐1 cells were compared with other C18 fatty acids, LA and α‐linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9‐HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9‐HODE and 13‐HODE (but not LA or ALA) markedly increased caspase‐3/7 activity (p < 0.001) in both monocytes and adherent THP‐1 cells, with 9‐HODE the more potent. In addition, 9‐HODE and 13‐HODE both increased Annexin‐V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1μM), but the effect of HODEs was replicated with apoptosis‐inducer camptothecin (10μM). Only 9‐HODE increased DNA fragmentation. The pro‐apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD‐CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ‐regulated apoptotic effects induced by 9‐HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9‐HODE and 13‐HODE are potent—and specific—regulators of apoptosis in THP‐1 cells. Their action is PPARγ‐dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.  相似文献   

5.
Carbonic anhydrase IX (CAIX) is a hypoxia-related protein that plays a role in proliferation in solid tumours. However, how CAIX increases proliferation and metastasis in solid tumours is unclear. The objective of this study was to investigate how a synthetic CAIX inhibitor triggers apoptosis in the HeLa cell line. The intracellular effects of CAIX inhibition were determined with AO/EB, AnnexinV-PI, and γ-H2AX staining; measurements of intracellular pH (pHi), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP); and analyses of cell cycle, apoptotic, and autophagic modulator gene expression (Bax, Bcl-2, caspase-3, caspase-8, caspase-9, caspase-12, Beclin, and LC3), caspase protein level (pro-caspase 3 and cleaved caspase-3, -8, -9), cleaved PARP activation, and CAIX protein level. Sulphonamide CAIX inhibitor E showed the lowest IC50 and the highest selectivity index in CAIX-positive HeLa cells. CAIX inhibition changed the morphology of HeLa cells and increased the ratio of apoptotic cells, dramatically disturbing the homeostasis of intracellular pHi, MMP and ROS levels. All these phenomena consequent to CA IX inhibition triggered apoptosis and autophagy in HeLa cells. Taken together, these results further endorse the previous findings that CAIX inhibitors represent an important therapeutic strategy, which is worth pursuing in different cancer types, considering that presently only one sulphonamide inhibitor, SLC-0111, has arrived in Phase Ib/II clinical trials as an antitumour/antimetastatic drug.  相似文献   

6.
Poly-γ-glutamic acid (PGA) is one of the bioactive compounds found in cheonggukjang, a fast-fermented soybean paste widely utilized in Korean cooking. PGA is reported to have a number of beneficial health effects, and interestingly, it has been identified as a possible anti-cancer compound through its ability to promote apoptosis in cancer cells, although the precise molecular mechanisms remain unclear. Our findings demonstrate that PGA inhibits the pro-proliferative functions of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a known chemical carcinogen in HT-29 human colorectal cancer cells. This inhibition was accompanied by hallmark apoptotic phenotypes, including DNA fragmentation and the cleavage of poly (ADP-ribose) polymerase (PARP) and caspase 3. In addition, PGA treatment reduced the expression of genes known to be overexpressed in colorectal cancer cells, including cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). Lastly, PGA promoted activation of 5'' adenosine monophosphate-activated protein (AMPK) in HT-29 cells. Taken together, our results suggest that PGA treatment enhances apoptosis in colorectal cancer cells, in part by modulating the activity of the COX-2 and AMPK signaling pathways. These anti-cancer functions of PGA make it a promising compound for future study.  相似文献   

7.
Basal-like breast cancer is an incurable disease with limited therapeutic options, mainly due to the frequent development of anti-cancer drug resistance. Therefore, identification of druggable targets to improve current therapies and overcome these resistances is a major goal. Targeting DNA repair mechanisms has reached the clinical setting and several strategies, like the inhibition of the CHK1 kinase, are currently in clinical development. Here, using a panel of basal-like cancer cell lines, we explored the synergistic interactions of CHK1 inhibitors (rabusertib and SAR020106) with approved therapies in breast cancer and evaluated their potential to overcome resistance. We identified a synergistic action of these inhibitors with agents that produce DNA damage, like platinum compounds, gemcitabine, and the PARP inhibitor olaparib. Our results demonstrated that the combination of rabusertib with these chemotherapies also has a synergistic impact on tumor initiation, invasion capabilities, and apoptosis in vitro. We also revealed a biochemical effect on DNA damage and caspase-dependent apoptosis pathways through the phosphorylation of H2AX, the degradation of full-length PARP, and the increase of caspases 3 and 8 activity. This agent also demonstrated synergistic activity in a platinum-resistant cell line, inducing an increase in cell death in response to cisplatin only when combined with rabusertib, while no toxic effect was found on non-tumorigenic breast tissue-derived cell lines. Lastly, the combination of CHK1 inhibitor with cisplatin and gemcitabine resulted in more activity than single or double combinations, leading to a higher apoptotic effect. In conclusion, in our study we identify therapeutic options for the clinical development of CHK1 inhibitors, and confirm that the inhibition of this kinase can overcome acquired resistance to cisplatin.  相似文献   

8.
Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.  相似文献   

9.
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133’s anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.  相似文献   

10.
Ethanol has been shown to exhibit therapeutic properties as an ablative agent alone and in combination with thermal ablation. Ethanol may also increase sensitivity of cancer cells to certain physical and chemical antitumoral agents. The aim of our study was to assess the potential influence of nontoxic concentrations of ethanol on hyperthermia therapy, an antitumoral modality that is continuously growing and that can be combined with classical chemotherapy and radiotherapy to improve their efficiency. Human leukemia cells were included as a model in the study. The results indicated that ethanol augments the cytotoxicity of hyperthermia against U937 and HL60 cells. The therapeutic benefit of the hyperthermia/ethanol combination was associated with an increase in the percentage of apoptotic cells and activation of caspases-3, -8 and -9. Apoptosis triggered either by hyperthermia or hyperthermia/ethanol was almost completely abolished by a caspase-8 specific inhibitor, indicating that this caspase plays a main role in both conditions. The role of caspase-9 in hyperthermia treated cells acquired significance whether ethanol was present during hyperthermia since the alcohol enhanced Bid cleavage, translocation of Bax from cytosol to mitochondria, release of mitochondrial apoptogenic factors, and decreased of the levels of the anti-apoptotic factor myeloid cell leukemia-1 (Mcl-1). The enhancement effect of ethanol on hyperthermia-activated cell death was associated with a reduction in the expression of HSP70, a protein known to interfere in the activation of apoptosis at different stages. Collectively, our findings suggest that ethanol could be useful as an adjuvant in hyperthermia therapy for cancer.  相似文献   

11.
In this study, detailed information on hepatocellular carcinoma (HCC) cells (HepG-2, SMMC-7721, and HuH-7) and normal human liver cell L02 treated by ferrocene derivatives (compounds 1, 2 and 3) is provided. The cell viability assay showed that compound 1 presented the most potent and selective anti-HCC activity. Further mechanism study indicated that the proliferation inhibition effect of compound 1 was associated with the cycle arrest at the G0/G1 phase and downregulation of cyclin D1/CDK4. Moreover, compound 1 could induce apoptosis in HCC cells by loss of mitochondrial membrane potential (ΔΨm), accumulation of reactive oxygen species (ROS), decrease in Bcl-2, increase in BAX and Bad, translocation of Cytochrome c, activation of Caspase-9, -3, and cleavage of PARP. These results indicated that compound 1 would be a promising candidate against HCC through G0/G1 cell cycle arrest-related proliferation inhibition and mitochondrial pathway-dependent apoptosis.  相似文献   

12.
Several photodynamically-active substances and farnesyltransferase inhibitors are currently being investigated as promising anticancer drugs. In this study, the combined effect of hypericin (the photodynamically-active pigment from Hypericum perforatum) and selective farnesyltransferase inhibitor manumycin (manumycin A; the selective farnesyltransferase inhibitor from Streptomyces parvulus) on HT-29 adenocarcinoma cells was examined. We found that the combination treatment of cells with photoactivated hypericin and manumycin resulted in enhanced antiproliferative and apoptotic response compared to the effect of single treatments. This was associated with increased suppression of clonogenic growth, S phase cell cycle arrest, elevated caspase-3/7 activity and time-dependent total cleavage of procaspase-3 and lamin B, cleavage of p21Bax into p18Bax and massive PARP cleavage. Moreover, we found that the apoptosis-inducing factor is implicated in signaling events triggered by photoactivated hypericin. Our results showed the relocalization of apoptosis-inducing factor (AIF) to the nuclei after hypericin treatment. In addition, we discovered that not only manumycin but also photoactivated hypericin induced the reduction of total Ras protein level. Manumycin decreased the amount of farnesylated Ras, and the combination treatment decreased the amount of both farnesylated and non-farnesylated Ras protein more dramatically. The present findings indicate that the inhibition of Ras processing may be the determining factor for enhancing the antiproliferative and apoptotic effects of combination treatment on HT-29 cells.  相似文献   

13.
Platyphyllenone is a type of diarylheptanoid that exhibits anti-inflammatory and chemoprotective effects. However, its effect on oral cancer remains unclear. In this study, we investigated whether platyphyllenone can promote apoptosis and autophagy in SCC-9 and SCC-47 cells. We found that it dose-dependently promoted the cleavage of PARP; caspase-3, -8, and -9 protein expression; and also led to cell cycle arrest at the G2/M phase. Platyphyllenone up-regulated LC3-II and p62 protein expression in both SCC-9 and SCC-47 cell lines, implying that it can induce autophagy. Furthermore, the results demonstrated that platyphyllenone significantly decreased p-AKT and increased p-JNK1/2 mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner. The specific inhibitors of p-JNK1/2 also reduced platyphyllenone-induced cleavage of PARP, caspase-3, and caspase -8, LC3-II and p62 protein expression. These findings are the first to demonstrate that platyphyllenone can induce both autophagy and apoptosis in oral cancers, and it is expected to provide a therapeutic option as a chemopreventive agent against oral cancer proliferation.  相似文献   

14.
The effect of statins on aminoglycoside-induced ototoxicity is controversial. This study aimed to explore the role of pravastatin (PV) in kanamycin-induced hearing loss in rats. Adult rats were intraperitoneally treated with 20 mg/kg/day of kanamycin (KM) for 10 days. In the PV- and PV + KM-treated rats, 25 mg/kg/day of PV was intraperitoneally administered for 5 days. The auditory brainstem response (ABR) thresholds were measured before and after drug treatment using a smartEP system at 4, 8, 16, and 32 kHz. Cochlear changes in poly ADP-ribose (PAR) polymerase (PARP), PAR, and caspase 3 were estimated using Western blotting. PV administration did not increase the ABR thresholds. The KM-treated rats showed elevated ABR thresholds at 4, 8, 16, and 32 kHz. The PV + KM-treated rats demonstrated lower ABR thresholds than the KM-treated rats at 4, 8, and 16 kHz. The cochlear outer hair cells and spiral ganglion cells were relatively preserved in the PV + KM-treated rats when compared with that in the KM-treated rats. The cochlear expression levels of PARP, PAR, and caspase 3 were higher in the KM-treated rats. The PV + KM-treated rats showed lower levels of PARP, PAR, and caspase 3 than the KM-treated rats. PV protected cochleae from KM-induced hearing loss in rats. The regulation of autophagy and apoptosis mediated the otoprotective effects of PV.  相似文献   

15.
Apoptosis is irreversible programmed cell death, characterized by a cellular cascade activation of caspase 3, which subsequently degrades proteins and other components of cells with a motif sequence. Here we report a novel reporter system to detect apoptosis, growth arrest, and cell death based on controlled and self‐amplified protein degradation. The key element of the reporter system is an apoptotic sensor chimerical protein which consists of three components: procaspase 3, ubiquitin (Ub), and a strong consensus sequence of N‐degron. Between each of these units is a DEVD (Asp‐Glu‐Val‐Asp) sequence, which acts as the cleavage target of caspase 3. This non‐conventional signal loss approach is much more sensitive than other native methods that are based on signal gain. The superior sensitivity is demonstrated by its effective application in 386‐well high‐throughput screening (HTS) with low drug concentrations and a short incubation time. The HTS selection process using this reporter system is very simple and economic. The simplicity eliminates potential errors introduced by multiple steps; there is no need for any substrate. Furthermore, the cells in the assay need not be disrupted, and the morphology of the cells can provide additional information on mechanisms. After HTS, the intact cells can also be used for other analytic analysis. This system thus has a potentially important role in the discovery and development of new anticancer drugs. It also appears to be very versatile, can be used both in vitro and in vivo with different linked reporter genes, and can be used for a variety of imaging applications.  相似文献   

16.
Tryptanthrin is an indoloquinazoline alkaloid isolated from indigo. Tryptanthrin and its benzo‐annulated derivative, benzo[b]tryptanthrin, inhibit both topoisomerases I (topo I) and II (topo II) and cause cytotoxicity in several human cancer cell lines. From diverse assessment methods, including cleavage complex stabilization, comet, DNA unwinding/intercalation, topo II ATPase inhibition, ATP competition for topo II, and wound‐healing assays, we determined that the mode of action of benzo[b]tryptanthrin is as a DNA non‐intercalative and ATP‐competitive topo I and II dual catalytic inhibitor. Benzo[b]tryptanthrin induced apoptosis through the cleavage of caspase‐3 and PARP in HCT15 colon cancer cells. Additionally, benzo[b]tryptanthrin reversed adriamycin resistance by down‐regulation of multidrug resistance protein 1 (MDR1) in adriamycin‐resistant MCF7 breast cancer cells (MCF7adr) with more potent inhibitory activity than tryptanthrin. Taken together, derivatization by benzo‐annulation of tryptanthrin ameliorated the MDR‐reversing effect of tryptanthrin and may pave the way to the discovery of a novel potent adjuvant agent for chemotherapy.  相似文献   

17.
15,16-Dihydrotanshinone I (DHTS) is extracted from Salvia miltiorrhiza Bunge which is a functional food in Asia. In this study, we investigated the apoptotic effect of DHTS on the human acute myeloid leukemia (AML) type III HL-60 cell line. We found that treatment with 1.5 μg/mL DHTS increased proapoptotic Bax and Bad protein expressions and activated caspases-3, -8, and -9, thus leading to poly ADP ribose polymerase (PARP) cleavage and resulting in cell apoptosis. DHTS induced sustained c-Jun N-terminal kinase (JNK) phosphorylation and Fas ligand (FasL) expression. The anti-Fas blocking antibody reversed the DHTS-induced cell death, and the JNK-specific inhibitor, SP600125, inhibited DHTS-induced caspase-3, -8, -9, and PARP cleavage. In a xenograft nude mice model, 25 mg/kg DHTS showed a great effect in attenuating HL-60 tumor growth. Taken together, these results suggest that DHTS can induce HL-60 cell apoptosis in vitro and inhibit HL-60 cell growth in vivo; the underlying mechanisms might be mediated through activation of the JNK and FasL signal pathways.  相似文献   

18.
试验采用人早幼粒白血病HL-60细胞,主要通过细胞活性丧失,染色质凝聚、核小体间DNA断裂等凋亡特征,研究了腐植酸诱导细胞凋亡的效应,观察了不同时间不同剂量(50~400 μg/mL)腐植酸对细胞凋亡的影响.腐植酸诱导HL-60细胞凋亡主要与线粒体内细胞色素c的释放有关,并证明伴随着Caspase-3(天冬氨酸特异性半...  相似文献   

19.
Chondrosarcoma is a highly malignant cartilage-forming bone tumor that has the capacity to invade locally and cause distant metastasis. Moreover, chondrosarcoma is intrinsically resistant to conventional chemotherapy or radiotherapy. The novel benzofuran derivative, BL-038 (2-amino-3-(2,6-dichlorophenyl)-6-(4-methoxyphenyl)benzofuran-4-yl acetate), has been evaluated for its anticancer effects in human chondrosarcoma cells. BL-038 caused cell apoptosis in two human chondrosarcoma cell lines, JJ012 and SW1353, but not in primary chondrocytes. Treatment of chondrosarcoma with BL-038 also induced reactive oxygen species (ROS) production. Furthermore, BL-038 decreased mitochondrial membrane potential (MMP) and changed mitochondrial-related apoptosis, by downregulating the anti-apoptotic activity members (Bcl-2, Bcl-xL) and upregulating pro-apoptotic members (Bax, Bak) of the B-cell lymphoma 2 (Bcl-2) family of proteins, key regulators of the apoptotic machinery in cells. These results demonstrate that in human chondrosarcoma cells, the apoptotic and cytotoxic effects of BL-038 are mediated by the intrinsic mitochondria-mediated apoptotic pathway, which in turn causes the release of cytochrome c, the activation of caspase-9 and caspase-3, and the cleavage of poly (ADP-ribose) polymerase (PARP), to elicit apoptosis response. Our results show that the benzofuran derivative BL-038 induces apoptosis in chondrosarcoma cells.  相似文献   

20.
A growing body of evidence indicates that dietary polyphenols show protective effects against various cancers. However, little is known yet about their activity in brain tumors. Here we investigated the interaction of dietary flavonoid quercetin (QCT) with the human glioblastoma A172 and LBC3 cell lines. We demonstrated that QCT evoked cytotoxic effect in both tested cell lines. Microscopic observations, Annexin V-FITC/PI staining, and elevated expression and activity of caspase 3/7 showed that QCT caused predominantly apoptotic death of A172 cells. Further analyses confirmed enhanced ROS generation, deregulated expression of SOD1 and SOD2, depletion of ATP levels, and an overexpression of CHOP, suggesting the activation of oxidative stress and ER stress upon QCT exposure. Finally, elevated expression and activity of caspase 9, indicative of a mitochondrial pathway of apoptosis, was detected. Conversely, in LBC3 cells the pro-apoptotic effect was observed only after 24 h incubation with QCT, and a shift towards necrotic cell death was observed after 48 h of treatment. Altogether, our data indicate that exposure to QCT evoked cell death via activation of intrinsic pathway of apoptosis in A172 cells. These findings suggest that QCT is worth further investigation as a potential pharmacological agent in therapy of brain tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号