首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Mechanical properties of the chromatin-bearing nucleus in normal and pathological cells are of general interest for epigenetics and medicine. Conventional techniques for quantitative measurements of material properties of cellular matter are based on application of controlled forces onto the cellular or nuclear boundary and do not allow probing intracellular structures that are not directly accessible for physical contact inside the living cell. In this work, we present a novel approach for contactless determination of the nuclear compressibility (i.e. the Poisson's ratio ν) in living cells by means of image- and model-based analysis of drug-induced cell deformation. The Poisson's ratio of the HeLa cell nucleus is determined from time-series of 3D images as a parameter of constitutive model that minimizes the dissimilarity between the numerically predicted and experimentally observed images.  相似文献   

3.
In higher plants, vacuoles increase their volumes in accordance with cell enlargement and occupy most of the cell volume. However, quantitative analyses of vacuolar contributions during changes in cell morphology have been hampered by the inadequacies and frequent artifacts associated with current three-dimensional (3-D) reconstruction methods of images derived from light microscopy. To overcome the limitations of quantifying 3-D structures, we have introduced 3-D morphometrics into light microscopy, adopting a contour-based approach for which we have developed an interpolation method. Using this software, named REANT, the morphological and morphometrical changes in protoplasts and vacuoles during plasmolysis could be investigated. We employed the tobacco (Nicotiana tabacum) BY-2 cell line No.7, expressing a GFP-AtVam3p fusion protein, BY-GV7, using GFP as a marker of vacuolar membranes (VMs). By vital staining of the plasma membrane (PM) of cells, we simultaneously obtained optical sections of both the PM and VM. We, therefore, reconstructed the 3-D structures of protoplasts and vacuoles before and after plasmolysis. We were able to identify the appearance of elliptical structures of VMs in the vacuolar lumen, and to determine that they were derived from cytoplasmic strands. From the 3-D structures, the volumes and surface areas were measured at the single cell level. The shrinkage of vacuoles accounted for most of the decrease in protoplast volume, while the surface area of the vacuoles remained mostly unchanged. These morphometrical analyses suggest that the elliptical structures are reservoirs for excess VMs that result from the response to rapid decreases in vacuolar and protoplast volumes.  相似文献   

4.
Vacuolar structures can be identified by AFM elasticity mapping   总被引:3,自引:0,他引:3  
Fluid-filled organelles like vesicles, endosomes and pinosomes are inevitable parts of cellular signalling and transport. Endothelial cells, building a barrier between blood and tissue, can form vacuolar organelles. These structures are implicated in upregulated fluid transport across the endothelium under inflammatory conditions. Vacuolar organelles have been described by transmission electron microscopy so far. Here, we present a method that images and mechanically characterizes intracellular structures in whole cells by atomic force microscopy (AFM). After crosslinking the cellular proteins with the fixative glutaraldehyde, plasma membrane depressions become observable, which are scattered around the cell nucleus. Nanomechanical analysis identifies them as spots of reduced stiffness. Scanning electron microscopy confirms their pit-like appearance. In addition, fluorescence microscopy detects an analogous pattern of protein-poor spots, thereby confirming mechanical rigidity to arise from crosslinked proteins. This AFM application opens up a mechanical dimension for the investigation of intracellular organelles.  相似文献   

5.
针对传统激光显微切割采用单激光焦点与工件相对运动形成加工轨迹,存在切割效率低、切割轨迹首尾不易闭合等局限性,提出基于数字微镜器件的无机械运动激光显微切割方法。通过调控数字微镜阵列,对激光光束的振幅进行调控,配合光路设计在样品区域得到任意的光场强度分布,实现强度近乎相同的面投影并行切割。阐述了关键参数设计、模拟仿真、系统搭建过程。先对聚酯薄膜进行直线、空心圆环、空心矩形等多种图案的切割,再对冷冻切片的细胞组织进行切割。实验表明,通过一次投影并行切割可设计的图案化结构,目标图形准确,切割效率高。在20×物镜下,最小切割线宽达到亚微米,最小圆环直径小于单细胞直径。该方法可为提高激光显微切割系统的效率和精度提供新思路和新方向。  相似文献   

6.
The soft X‐ray microscope at the Lawrence Berkeley National Laboratory was developed for visualization of biological tissue. Soft X‐ray microscopy provides high‐resolution visualization of hydrated, non‐embedded and non‐sectioned cells and is thus potentially an alternative to transmission electron microscopy. Here we show for the first time soft X‐ray micrographs of structures isolated from the guinea‐pig inner ear. Sensory outer hair cells and supporting pillar cells are readily visualized. In the hair cells, individual stereocilia can easily be identified within the apical hair bundle. The underlying cuticular plate is, however, too densely composed or too thick to be clearly visualized, and thus appears very dark. The cytoplasmic structures protruding from the cuticular plates as well as the fibrillar material surrounding and projecting from the cell nuclei can be seen. In the pillar cells the images reveal individual microtubule bundles. Soft X‐ray images of the acellular tectorial membrane and thin two‐layered Reissner's membrane display a level of resolution comparable to low‐power electron microscopy.  相似文献   

7.
将飞秒激光双光子聚合加工技术和毛细力诱导自组装技术相结合实现了各向异性结构和多级结构的制备。首先,使用飞秒激光双光子加工技术加工出微柱阵列,将微柱置于显影液中显影,然后放置在空气中。在显影液蒸发的过程中,微柱结构单元受到毛细力的作用而弯曲实现自组装。通过控制微柱的高度和直径的不一致性实现了两种各向异性结构制备方法,并成功制备了底层微柱直径分别为2μm和6μm双层结构。由于毛细力的大小和微柱高度无关,且同样端部变形量下较高微柱的弹性回复力小于较低微柱的弹性回复力,更易发生弯曲;直径较大的微柱具有更强的抗弯曲能力,从而引导直径较小的微柱向较大的微柱倾斜,藉此制备了各向异性结构。使用毛细力自组装辅助飞秒激光微纳加工可以实现灵活可控的复杂3D结构的加工,并将在生物医药、化学分析、微流体等领域发挥重要作用。  相似文献   

8.
This study examined the action of anisosmotic media on the volume of nucleated erythrocytes isolated from Rana temporaria. Elevation of medium osmolarity from 100 to 345 mOsm resulted in attenuation of mean cell volume by more than 3-fold, estimated by hematocrit measurement. By contrast to this 'classic' erythrocyte volume evaluation technique, we did not observe any significant cell volume modulation by examining the 3D reconstruction of erythrocyte interference images obtained by laser interference microscopy. Comparative analysis of mean cell volume, phase height and cell area appraised by laser interference microscopy showed that the lack of visible alterations of phase image geometry was caused by sharp elevation of the average refractive index of the cytoplasm in shrunken cells. Thus, our results show for the first time that laser interference microscopy in combination with a direct method for cell volume measurement may be employed for estimation of the refractory index of intracellular milieu and for assessment of changes of physical chemical properties of the cytoplasm evoked by diverse stimuli including osmotic stress.  相似文献   

9.
A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium–tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.  相似文献   

10.
We first describe early uses of the centrifuge for deciphering physical properties and molecular organization within living cells, as well as the development and use of centrifuge microscopes for such studies. The rationale for developing a centrifuge microscope that allows high‐extinction polarized light microscopy to observe dynamic fine structures in living cells is next discussed. We then describe a centrifuge polarizing microscope (CPM) that we developed for observing fine structural changes in living cells which are being exposed to up to ≈ 11 500 times earth's gravitational field (g). With the specimen housed in a rotor supported on an air spindle motor, and imaged through an external microscope illuminated by a precisely synchronized flash of less than 10 ns duration from a Nd:YAG laser, the image of the spinning object remains steady up to the maximum speed of 11 700 rev min?1, or up to ≈ 11 500 × g. The image is captured, at up to 25 frames s?1, by an interference‐fringe‐free CCD camera that is synchronized to the centrifuge rotor. At all speeds (in 100 rev min?1 increments), the image is resolved to better than 1 µm, while birefringence of the specimen, housed in a specially designed specimen chamber that suffers low‐stress birefringence and prevents leakage of the physiological solutions, is detected with a retardance sensitivity of better than 1 nm. Differential interference contrast and fluorescence images (532 nm excitation) of the spinning specimen can also be generated with the CPM. The second part of this study (Inouéet al., J. Microsc. 201 (2001) 357–367, describes several biological applications of the CPM that we have explored. Individual live cells, such as oocytes and blood cells, are supported on a sucrose or Percoll density gradient while other cells, such as cultured fibroblasts and Dictyostelium amoebae, are observed crawling on glass surfaces. Observations of these cells exposed to the high G fields (centripetal acceleration/g) in the CPM are yielding many new results that lead to intriguing questions regarding the organization and function of fine structures in living cells and related quasi‐fluid systems.  相似文献   

11.
In order to examine histological sections of the rat vomeronasal epithelium with the atomic force microscope (AFM), we developed an electron beam etching method that improves the resolution of AFM images. This method results in AFM images comparable to those obtained with the transmission electron microscope (TEM). Ultrathin tissue sections embedded in epoxy resin were observed before and after the treatment with electron beam radiation. Before electron beam treatment, epithelial structures such as the microvilli surface, dendritic processes, the supporting cell layers and the neuronal cell layers were all visible using the AFM. However, only a few subcellular structures could also be resolved. The AFM images were not as clear as those obtained with the TEM. After electron beam treatment, however, the resolution of AFM images was greatly improved. Most of the subcellular structures observed in TEM images, including the inner membrane of mitochondria, ciliary-structure precursor body, junctional complexes between the neurons and supporting cells, and individual microvilli were now visible in the AFM images. The electron beam treatment appeared to melt the embedding resin, bringing subcellular structures into high relief. The result of this study suggests that electron beam etching of histological samples may provide a new method for the study of subcellular structure using the AFM.  相似文献   

12.
Many fundamental biological processes, such as the search for food, immunological responses and wound healing, depend on cell migration. Video microscopy allows the magnitude and direction of cell migration to be documented. Here, we present a simple and inexpensive method for simultaneous tracking of hundreds of migrating cells over periods of several days. Low-magnification dark-field microscopy was used to visualize individual cells whereas time-lapse video images were acquired by computer for future analysis. We employed an automated tracking algorithm to identify individual cells on each video image allowing migration paths to be tracked using a nearest neighbour algorithm. To test the method, we followed the time-course of migration of 3T3 fibroblasts, endothelial cells and individual amoeba in the absence of any chemical stimulus gradient. All cell types showed a 'random walk' behaviour in which mean squared displacement in position increased linearly with time. We defined a 'migration coefficient' (D(mig)), analogous to a diffusion coefficient, which gave an estimate of cell migration rate. D(mig) depended on cell type and temperature. When amoebas were made to undergo chemotaxis, the cells no longer followed a random walk but instead moved at a near constant velocity (V(av)) towards the chemotactic stimulus.  相似文献   

13.
通过有限元预紧力单元模拟螺栓预紧力的方法计算量较大,不太适合大型螺栓连接结构的工程计算。基于有限元软件MSC./Patran,将螺栓连接结构视为层单元,应用层单元法和多点约束技术对典型的L形螺栓连接结构建立了有限元模型,并完成了模态分析,将模态计算结果与完全刚性连接的一体化简化模型的模态分析结果及实际结构的模态实验结果进行了比较。研究表明,该方法的计算结果与实验结果较一致,且计算量小,为有预紧力作用下螺栓连接结构的有限元计算提供了准确可靠的计算方法。  相似文献   

14.
Since the recent boost in the usage of electron microscopy in life‐science research, there is a great need for new methods. Recently minimal resin embedding methods have been successfully introduced in the sample preparation for focused‐ion beam scanning electron microscopy (FIB‐SEM). In these methods several possibilities are given to remove as much resin as possible from the surface of cultured cells or multicellular organisms. Here we introduce an alternative way in the minimal resin embedding method to remove excess of resin from two widely different cell types by the use of Mascotte filter paper. Our goal in correlative light and electron microscopic studies of immunogold‐labelled breast cancer SKBR3 cells was to visualise gold‐labelled HER2 plasma membrane proteins as well as the intracellular structures of flat and round cells. We found a significant difference (p < 0.001) in the number of gold particles of selected cells per 0.6 m2 cell surface: on average a flat cell contained 2.46 ± 1.98 gold particles, and a round cell 5.66 ± 2.92 gold particles. Moreover, there was a clear difference in the subcellular organisation of these two cells. The round SKBR3 cell contained many organelles, such as mitochondria, Golgi and endoplasmic reticulum, when compared with flat SKBR3 cells. Our next goal was to visualise crosswall associated organelles, septal pore caps, of Rhizoctonia solani fungal cells by the combined use of a heavy metal staining and our extremely thin layer plastification (ETLP) method. At low magnifications this resulted into easily finding septa which appeared as bright crosswalls in the back‐scattered electron mode in the scanning electron microscope. Then, a septum was selected for FIB‐SEM. Cross‐sectioned views clearly revealed the perforate septal pore cap of R. solani next to other structures, such as mitochondria, endoplasmic reticulum, lipid bodies, dolipore septum, and the pore channel. As the ETLP method was applied on two widely different cell types, the use of the ETLP method will be beneficial to correlative studies of other cell model systems and multicellular organisms.  相似文献   

15.
The rapid development of three‐dimensional (3D) culture systems and engineered cell‐based tissue models gave rise to an increasing need of new techniques, allowing the microscopic observation of cell behavior/morphology in tissue‐like structures, as clearly signalled by several authors during the last decennium. With samples consisting of small aggregates of isolated cells grown in suspension, it is often difficult to produce an optimal embedded preparation that can be further successfully processed for classical histochemical investigations. In this work, we describe a new, easy to use, efficient method that enables to embed an enriched “preparation” of isolated cells/small 3D cell aggregates, without any cell stress or damage. As for after tissue‐embedding procedures, the cellular blocks can be further suitably processed for efficient histochemical as well as immunohistochemical analyses, rendering more informative‐and attractive‐studies onto 3D cell‐based culture of neo‐tissues. Microsc. Res. Tech. 78:249–254, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
An all-fiber compact gas sensing system using a hollow-core photonic bandgap fiber (HC-PBF) as a gas cell is proposed in this paper. Compared with the present reported microstructured optical-fiber gas cells, the HC-PBF gas cell proposed here has relatively lower transmission loss and much simpler construction. The total transmission loss through the HC-PBF gas cell is demonstrated experimentally to be as low as 1.5 dB and the time taken for gas to get into the 90-cm-cell, under the free diffusion condition, is approximately 11 min. Combining the HC-PBF gas cell with a tunable fiber laser, an all-fiber gas sensing system is developed. The properties of the proposed system are demonstrated experimentally by detection of carbon monoxide (CO) and acetylene (C2H2). Approximately linear relationships between the system responses and the concentrations of the detected gases are experimentally demonstrated. The minimal detectable concentration of CO of 300 ppm and C2H2 of 5 ppm are also achieved respectively by the experiments.  相似文献   

17.
Elucidating the structure and dynamics of lamellipodia and filopodia in response to different stimuli is a topic of continuing interest in cancer cells as these structures may be attractive targets for therapeutic purposes. Interestingly, a close functional relationship between these actin-rich protrusions and specialized membrane domains has been recently demonstrated. The aim of this study was therefore to investigate the fine organization of these actin-rich structures and examine how they structurally may relate to detergent-resistant membrane (DRM) domains in the MTLn3 EGF/serum starvation model. For this reason, we designed a straightforward and alternative method to study cytoskeleton arrays and their associated structures by means of correlative fluorescence (/laser)- and electron microscopy (CFEM).
  CFEM on whole mounted breast cancer cells revealed that a lamellipodium is composed of an intricate filamentous actin web organized in various patterns after different treatments. Both actin dots and DRM's were resolved, and were closely interconnected with the surrounding cytoskeleton. Long actin filaments were repeatedly observed extending beyond the leading edge and their density and length varied after different treatments. Furthermore, CFEM also allowed us to demonstrate the close structural association of DRMs with the cytoskeleton in general and the filamentous/dot-like structural complexes in particular, suggesting that they are all functionally linked and consequently may regulate the cell's fingertip dynamics. Finally, electron tomographic modelling on the same CFEM samples confirmed that these extensions are clearly embedded within the cytoskeletal matrix of the lamellipodium.  相似文献   

18.
Three-dimensional confocal laser scanning microscopy (CLSM) was used as an essential investigation method to obtain information about the formation and morphological characteristics of nanocapsules. Nanocapsules are built by layer-by-layer deposition of alternatively charged polyelectrolytes on templates forming nanostructured hollow shells. CLSM is unique in allowing for monitoring of the core dissolution process in real time and for studying nanocapsule functioning in hydrated conditions within a three-dimensional and temporal framework. Since we are also interested in the identification of other possible templates, we briefly report on the use of yeast cells as biocolloidal cores monitored by means of two-photon microscopy. Here we focus our attention on the use of CdCO(3) crystals as template candidates for the preparation of stable capsules. Both cubic and spherical CdCO(3) cores have been produced. Cubic cores exhibit higher monodispersity and smaller size compared to spherical ones. Capsules templated on these cores have a higher surface-to-volume ratio that is valuable for applications related to drug delivery, functional properties of the shells and adsorption of proteins, and other biologically relevant molecules. Microsc. Res. Tech. 59:536-541, 2002.  相似文献   

19.
Synaptonemal complex (SC) analysis is a widely used method for assessing the effects of genotoxic agents in germ cells. Although the evolution of the SCs and their related annexed structures, such as nucleoli, has been well established, sometimes it is difficult to assess whether the abnormal features observed correspond to genotoxic effects or to an artefact related to the method used to obtain the SC preparations. In this article, we describe a new method of obtaining SC preparations for electron microscopy, as well as the results of a study of the first meiotic prophase in oocytes and spermatocytes of the rat (Rattus norvegicus Sprague Dawley) in which we analysed how the methodology used can influence the results. Besides important sex-specific differences, mainly during desynapsis (diplotene), a relationship between several bivalents and nucleolar structures, that in some cases could disturb the synaptic process, was observed in oocytes. At the same time, the characteristic SC fragmentation in oocytes was verified, but this fragmentation, in addition to a sex-specific component, was influenced by the method itself. By reducing to a minimum the artefacts produced by the method, it is possible to optimise the analysis of SCs as a method of testing genotoxic effects in the germ line.  相似文献   

20.
In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV‐pulsed mature human dendritic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号