首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proliferative capacity of immune cells is known to be sensitive to conditions of oxidative stress and lipid peroxidation. We tested the hypothesis that activated neutrophils can induce peroxidation in extracellular lipid substrates, and evaluated the effects of 4-hydroxy-2,3-trans-nonenal (4-HNE)--the most reactive aldehydic product of lipid peroxidation--on mitogen-induced proliferation of human T lymphocytes. Neutrophils activated in the presence of extracellular lipid substrates (liposomes, cellular membranes) induced lipid peroxidation. By means of cytoimmunofluorescent labeling and confocal microscopy, the binding of 4-HNE to surface and cytoplasmic proteins of activated neutrophils was observed. Short (20 min) pre-treatment of cells with low concentrations of 4-HNE were able to dose-dependently decrease the proliferation of human peripheral blood lymphocytes challenged with PHA or anti-CD3 monoclonal antibody OKT3, as well as the proliferation of a tetanus specific human T-cell line challenged with tetanus toxoid. In these conditions, the binding of 4-HNE to surface and cytoplasmic proteins of lymphocytes was also observed. When the proliferative capacity of peripheral blood lymphocytes was monitored over several days after 4-HNE treatment and PHA challenge, a recovery and a rebound in cell proliferation was observed. Data reported indicate that the lipid peroxidation promoted by activated neutrophils can exert modulatory effects on the responsivity of human T cells, through the action of its most reactive product, 4-HNE.  相似文献   

2.
For the first time it was demonstrated that 4-hydroxynonenal (HNE) is formed by the myocardium. 1 to 2 pmol HNE/min/mg protein were released from isolated perfused hearts of 18-month-old WKY rats during a normoxic period of perfusion. During the first minutes of reperfusion following 30 min of ischaemia, the mean value of HNE release increased in comparison to pre-ischaemic HNE release (pre-ischaemic control). However, the alterations were significant only in the second minute of reperfusion. HNE liberation significantly intensified during the early reperfusion period of hearts of 18-month-old spontaneously hypertensive rats (SHR, with cardiac hypertrophy and congestive heart failure) in comparison with the pre-ischaemic control period. Furthermore, HNE liberation from those hearts was higher than from hearts of normotensive control animals (WKY rats). Maximum quantities were observed 2 min after ischaemia, with 6 to 10 pmol HNE/min/mg protein. The results suggest that the formation of chemotactic products of radical-induced lipid peroxidation, such as HNE, is markedly increased in reperfused hypertrophic and failing myocardium, and emphasize the role of HNE as a possible chemotactic agent during postischaemic reoxygenation.  相似文献   

3.
The receptor encoded by the W (c-kit) locus is expressed on the membrane of mouse primordial germ cells, whereas its ligand termed stem cell factor (SCF), encoded by the Sl locus, is expressed on the membrane of somatic cells associated with both the primordial germ cell migratory pathways and homing sites. Using an in vitro short time assay which allows a quantitative measure of adhesion between cells, in the present paper we show that SCF/c-kit interaction can modulate primordial germ cell adhesion to somatic cells. We report that the adhesiveness of 11.5 dpc primordial germ cells to four types of somatic cells in culture (TM4 cells, STO fibroblasts, bone marrow stromal cells and gonadal somatic cells) is significantly reduced by antibodies directed against c-kit receptor or SCF, as well by soluble SCF. This SCF/c-kit mediated adhesion seems independent of SCF-induced tyrosine autophosphorylation of c-kit receptor. Moreover, primordial germ cells showed a poor ability to adhere to a bone marrow stromal cell line carrying the Sl(d) mutation (unable to synthesize membrane-bound SCF). This adhesiveness was not further impaired by anti-c-kit antibody. These results demonstrate that SCF/c-kit interaction contributes to the adhesion of primordial germ cells to somatic cells in culture and suggest that the role played by SCF in promoting survival, proliferation and migration of these cells in vitro and in vivo, demonstrated by several studies, might depend on the ability of the membrane-bound form of this cytokine to directly mediate primordial germ cell adhesion to the surrounding somatic cells.  相似文献   

4.
Oxidative stress and mitochondrial dysfunction are implicated in the neuronal cell death that occurs in physiological settings and in neurodegenerative disorders. In Alzheimer's disease (AD) degenerating neurons are associated with deposits of amyloid beta-peptide (A beta), and there is evidence for increased membrane lipid peroxidation and protein oxidation in the degenerating neurons. Cell culture studies have shown that A beta can disrupt calcium homeostasis and induce apoptosis in neurons by a mechanism involving oxidative stress. We now report that catecholamines (norepinephrine, epinephrine, and dopamine) increase the vulnerability of cultured hippocampal neurons to A beta toxicity. The catecholamines were effective in potentiating A beta toxicity at concentrations of 10-200 microM, with the higher concentrations (100-200 microM) themselves inducing cell death. Serotonin and acetylcholine were not neurotoxic and did not modify A beta toxicity. Levels of membrane lipid peroxidation, and cytoplasmic and mitochondrial reactive oxygen species, were increased following exposure to neurons to A beta, and catecholamines exacerbated the oxidative stress. Subtoxic concentrations of catecholamines exacerbated decreases in mitochondrial energy charge and transmembrane potential caused by A beta, and higher concentrations of catecholamines alone induced mitochondrial dysfunction. Antioxidants (vitamin E, glutathione, and propyl gallate) protected neurons against the damaging effects of A beta and catecholamines, whereas the beta-adrenergic receptor antagonist propanolol and the dopamine (D1) receptor antagonist SCH23390 were ineffective. Measurements of intracellular free Ca2+ ([Ca2+]i) showed that A beta induced a slow elevation of [Ca2+]i which was greatly enhanced in cultures cotreated with catecholamines. Collectively, these data indicate a role for catecholamines in exacerbating A beta-mediated neuronal degeneration in AD and, when taken together with previous findings, suggest roles for oxidative stress induced by catecholamines in several different neurodegenerative conditions.  相似文献   

5.
6.
4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) are major lipid peroxidation products generated by free radical attack on membranes and appear to contribute to the cytotoxic effects of oxidative stress by a mechanism involving adduct formation with cellular proteins. In the present studies, we investigated the relationship between lipid peroxidation and eventual inactivation of plasma membrane proteins using a model system consisting of purified red blood cell membranes and Fe2+/EDTA. Using this system, we also analyzed the ability of a novel antioxidant, U-101033E (2,4-diaminopyrrolopyrimidine), to inhibit lipid peroxidation and associated protein damage. Our results demonstrated that significant levels of MDA and 4-HNE are generated in this model system, and that both aldehydes are capable of cross-linking membrane proteins. In addition, we used a monoclonal antibody to demonstrate the presence of 4-HNE-protein adducts in this system. The generation of 4-HNE-protein adducts closely paralleled the time course of lipid peroxidation and membrane protein cross-linking, suggesting that 4-HNE may contribute to membrane protein cross-linking. Analysis of U-101033E in this system showed that this antioxidant inhibited lipid peroxidation, prevented the appearance of 4-HNE-protein adducts, and strongly reduced membrane protein cross-linking, with an EC50 of 0.5 microM. We also show that these antioxidant effects were not due to the scavenging of superoxide anion. Thus, these studies demonstrate the potential usefulness of U-101033E for treating certain disease processes where lipid peroxidation plays a role in disease pathogenesis.  相似文献   

7.
We investigated the effect of uncoupling astrocytic gap junctions on neuronal vulnerability to oxidative injury in embryonic rat hippocampal cell cultures. Mixed cultures (neurons growing on an astrocyte monolayer) treated with 18-alpha-glycyrrhetinic acid (GA), an uncoupler of gap junctions, showed markedly enhanced generation of intracellular peroxides (2,7-dichlorofluorescein fluorescence), impairment of mitochondrial function [(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction], and cell death (lactate dehydrogenase release) following exposure to oxidative insults (FeSO4 and 4-hydroxynonenal). GA alone had little or no effect on basal levels of peroxides, mitochondrial function, or neuronal survival. Intercellular dye transfer analyses revealed extensive astrocyte-astrocyte coupling but no astrocyte-neuron or neuron-neuron coupling in the mixed cultures. Studies of pure astrocyte cultures and microscope analyses of neurons in mixed cultures showed that the increased oxidative stress and cell death in GA-treated cultures occurred only in neurons and not in astrocytes. Antioxidants (propyl gallate and glutathione) blocked the death of neurons exposed to FeSO4/GA. Elevations of neuronal intracellular calcium levels ([Ca2+]i) induced by FeSO4 were enhanced in neurons in mixed cultures exposed to GA. Removal of extracellular Ca2+ and the L-type Ca2+ channel blocker nimodipine prevented impairment of mitochondrial function and cell death induced by FeSO4 and GA, whereas glutamate receptor antagonists were ineffective. Finally, GA exacerbated kainate- and FeSO4-induced injury to pyramidal neurons in organotypic hippocampal slice cultures. The data suggest that interastrocytic gap junctional communication decreases neuronal vulnerability to oxidative injury by a mechanism involving stabilization of cellular calcium homeostasis and dissipation of oxidative stress.  相似文献   

8.
PURPOSE: To study whether cell type-specific death occurs in retinal ischemia-reperfusion injury and the possible roles of p16INK4 in the determination of cell death. METHODS: Retinal ischemia-reperfusion injury was induced in rats by a ligation method. After 1 hour of ischemia and a time of reperfusion that varied, rat eyes were enucleated. Cell death in the retina was studied by the TdT-dUTP terminal nick-end labeling method and propidium iodide (PI) staining. Electron microscopic observation of the retina was also performed. Immunohistochemical studies using antibodies against syntaxin and calbindin were performed to detect amacrine cells and horizontal cells, respectively, and immunohistochemical studies using an antibody against p16INK4 were performed to study whether this cell cycle-related protein was expressed in dying cells. RESULTS: Most of the calbindin-positive horizontal cells in the outer aspect of the inner nuclear layer (INL) showed morphologic features of necrosis. In contrast, syntaxin-positive amacrine cells in the inner aspect of the INL showed features of apoptosis. Of 320 calbindin-positive horizontal cells, only 11 (3.4%) showed positive PI staining. Those calbindin-positive, horizontal cells were p16INK4 positive. In contrast, 746 of 910 (82.0%) syntaxin-positive amacrine cells showed condensed PI staining, and none were p16INK4 positive. CONCLUSIONS: Expression of p16INK4 may regulate the fate of retinal neurons in ischemia-reperfusion injury, and cell type-specific death thus occurs in the retina after such injury.  相似文献   

9.
A deficit in glucose uptake and a deposition of amyloid beta-peptide (A beta) each occur in vulnerable brain regions in Alzheimer's disease (AD). It is not known whether mechanistic links exist between A beta deposition and impaired glucose transport. We now report that A beta impairs glucose transport in cultured rat hippocampal and cortical neurons by a mechanism involving membrane lipid peroxidation. A beta impaired 3H-deoxy-glucose transport in a concentration-dependent manner and with a time course preceding neurodegeneration. The decrease in glucose transport was followed by a decrease in cellular ATP levels. Impairment of glucose transport, ATP depletion, and cell death were each prevented in cultures pretreated with antioxidants. Exposure to FeSO4, an established inducer of lipid peroxidation, also impaired glucose transport. Immunoprecipitation and Western blot analyses showed that exposure of cultures to A beta induced conjugation of 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, to the neuronal glucose transport protein GLUT3. HNE induced a concentration-dependent impairment of glucose transport and subsequent ATP depletion. Impaired glucose transport was not caused by a decreased energy demand in the neurons, because ouabain, which inhibits Na+/K(+)-ATPase activity and thereby reduces neuronal ATP hydrolysis rate, had little or no effect on glucose transport. Collectively, the data demonstrate that lipid peroxidation mediates A beta-induced impairment of glucose transport in neurons and suggest that this action of A beta may contribute to decreased glucose uptake and neuronal degeneration in AD.  相似文献   

10.
11.
Following iv administration of 4-hydroxy-2-nonenal (HNE) and [4-3H]HNE to rats, 15 polar urinary metabolites accounting for about 50% of the urinary radioactivity were separated by HPLC. Among them, eight major compounds and tritiated water were quantified. The metabolites were unequivocally characterized using GC/MS and ESI/MS/MS/MS. Most of "HNE polar metabolites" originate from omega-oxidation of 4-hydroxy-2-nonenoic acid (HNA): 9-hydroxy-HNA, its mercapturic acid conjugate, and two diastereoisomers of the corresponding lactone. The oxidation of 9-hydroxy-HNA by alcohol and aldehyde dehydrogenases leads to the excretion of 9-carboxy-HNA and of the corresponding lactone mercapturic acid conjugate. 1, 4-Dihydroxy-2-nonene (DHN) originating from the reduction of HNE by alcohol dehydrogenase was to a lesser extent omega-hydroxylated, leading to 9-hydroxy-DHN which was excreted as a mercapturic acid conjugate (two diastereoisomers).  相似文献   

12.
The effects of dietary cholesterol on brain amyloid precursor protein (APP) processing were examined using an APP gene-targeted mouse, genetically humanized in the amyloid beta-peptide (Abeta) domain and expressing the Swedish familial Alzheimer's disease mutations. These mice express endogenous levels of APP holoprotein and abundant human Abeta. Increased dietary cholesterol led to significant reductions in brain levels of secreted APP derivatives, including sAPPalpha, sAPPbeta, Abeta1-40, and Abeta1-42, while having little to no effect on cell-associated species, including full-length APP and the COOH-terminal APP processing derivatives. The changes in levels of sAPP and Abeta in brain all were negatively correlated with serum cholesterol levels and levels of serum and brain apoE. These results demonstrate that secreted APP processing derivatives and Abeta can be modulated in the brain of an animal by diet and provide evidence that cholesterol plays a role in the modulation of APP processing in vivo. APP gene-targeted mice lacking apoE, also have high serum cholesterol levels but do not show alterations in APP processing, suggesting that effects of cholesterol on APP processing require the presence of apoE.  相似文献   

13.
14.
BACKGROUND/AIMS: Clinical experience and studies with experimental animal models indicate a synergistic hepatotoxic effect of dietary iron overload and chronic alcohol ingestion. In order to elucidate the mechanism underlying this synergism, we examined the hepatic levels of ethanol-inducible cytochrome P450 2E1, glutathione and malondialdehyde, and the effect of iron chelation with desferrioxamine, in livers from rats treated with iron and/or ethanol. METHODS: Animals received diets with or without 2.5-3% carbonyl iron for 6-9 weeks, followed by an ethanol-containing diet or a liquid control diet for 5-9 weeks. Desferrioxamine was administered subcutaneously with mini-osmotic pumps. Alanine aminotransferase activity in serum and hepatic contents of glutathione and malondialdehyde were determined. The hepatic level of cytochrome P450 2E1 was determined with Western Blotting using a specific polyclonal antibody. RESULTS: The combination of iron and alcohol led to a marked increase in serum alanine aminotransferase activity as compared with all other treatment groups, and iron chelation with desferrioxamine reversed these increases. Treatment with alcohol alone led to slightly increased aminotransferases compared with controls. The level of cytochrome P450 2E1 was significantly elevated in microsomes isolated from ethanol-treated rats, but neither additional iron supplementation nor desferrioxamine influenced this level significantly. Glutathione contents were increased in the livers of animals treated with iron and/or ethanol. Malondialdehyde values were increased in iron-treated animals, whereas neither ethanol nor desferrioxamine altered malondialdehyde levels significantly. CONCLUSIONS: The toxic effects exerted by the combination of iron overload and chronic ethanol feeding on rat liver are dependent on a pool of chelatable iron. The hepatic level of cytochrome P450 2E1 is markedly induced by ethanol but not further altered by iron overload. Neither increased lipid peroxidation nor depletion of hepatic glutathione levels can explain the synergistic hepatotoxic effects of iron and ethanol in this model.  相似文献   

15.
RRR-alpha-tocopheryl succinate (VES) was studied for effects on murine EL-4 cell proliferation and production of interleukin-2 (IL-2) and transforming growth factor-beta (TGF-beta). VES was biphasic in its actions: 0.1 microgram/ml enhanced EL-4 cell proliferation, whereas 10-20 microgram/ml inhibited cellular proliferation. Cell-conditioned media (CM) from EL-4 cells treated with 0.2 ng/ml phorbol myristate acetate (PMA) + 0.1 microgram/ml VES contained increased amounts of IL-2, as determined by the murine cytotoxic T cell IL-2-dependent CTLL-2 bioassay. VES at 0.1 microgram/ml or 0.1 microgram/ml VES + 0.2 ng/ml PMA induced the expression of IL-2 mRNA by EL-4 cells three to nine hours after treatment. CM from EL-4 cells treated with VES at 10-20 microgram/ml exhibited potent antiproliferative activity when tested in the TGF-beta-responsive mink lung cell (Mv1Lu) bioassay and showed reduced inhibitory effects when tested on TGF-beta receptor-negative mink lung (DRA-27) cells. CM from control-treated EL-4 cells exhibited no antiproliferative activity. The VES-induced antiproliferative activity was characterized as TGF-beta by neutralization analyses and immunoprecipitation of metabolically labeled proteins with TGF-beta-specific reagents. VES treatment of EL-4 cells had no effect on TGF-beta 1 mRNA expression while downregulating TGF-beta 3 mRNA expression. In summary, these studies showed that 0.1 microgram/ml VES enhanced cellular proliferation, in part, via increased IL-2 production, whereas 10-20 micrograms/ml VES inhibited cellular proliferation, in part, via the secretion of biologically active TGF-beta.  相似文献   

16.
The evaluation of continuing medical education (CME) courses will soon become one of the tools used to assess post-graduate training, particularly in compliance with the recent legislation. In 1997, the organization committee of the French congress of pneumology decided to analyze the different methodologies used to assess the congress CME courses. The analysis was based on a satisfaction questionnaire, a before-after assessment of 4 workshops, and a comparison between participants and non-participants in 3 plenary sessions. Mann-Whitney and Wilcoxon non-parametric tests were used for statistical analysis. Satisfaction scores were high. For the plenary sessions, test results were better for participants than for the non-participant controls and for the workshops, test results were higher after completion. This type of study can only evaluate the level of knowledge acquired and is subject to a selection bias. It cannot analyze the practical impact of the courses nor their effect on patient health. Such assessment methodologies should be used more widely in order to improve future training sessions.  相似文献   

17.
Recent studies suggest a role of the neural cell adhesion molecules L1 and NCAM in mechanisms of memory storage. In the present study we analyzed the effect of continuous intraventricular infusion of polyclonal antibodies directed against L1 (antiL1) or NCAM (antiNCAM) on the performance of male Wistar rats during the acquisition and retention of a spatial learning task (Morris water-maze). In this task animals have to learn the spatial position of a hidden escape platform in a water tank to escape onto it. During acquisition of the task animals with continuous infusion of antiNCAM - but not those infused with antiL1 - showed day-dependent attenuated learning in comparison to controls (P = 0.001). Control animals were either injected with vehicle (PBS) or with polyclonal antibodies raised against liver cell membrane. When the escape platform was removed during the retention test (transfer test), the performance of animals continuously infused with antiL1 as well as those continuously infused with antiNCAM showed an impaired search pattern when compared with the performance of control animals (P = 0.001 and 0.04, respectively). Whereas control animals spent up to 46% of their time searching for the platform in the correct quadrant, the time antiL1- and antiNCAM-infused animals spent in this quadrant was closer to chance level (30.5% and 36.5%), respectively). The present data provide additional support for an involvement of the two adhesion molecules L1 and NCAM in synaptic plasticity underlying memory storage.  相似文献   

18.
The authors developed an experimental model of necrotizing enterocolitis (NEC) by hypoxia-reoxygenation, and determined the content of malondialdehyde levels as an index of lipid peroxidation, related with a free-radical reaction in the gastrointestinal tract of newborn rats. They also investigated the role of vitamin E, an antioxidant, in this free-radical injury. The study was performed on 1-day-old rats. The 30 rat pups were divided into three groups. Hypoxia was induced by placing the pups in a 100% carbon dioxide chamber for 5 minutes. The pups were reoxygenated with 100% oxygen for 5 minutes. Group 1 (n = 10) was subjected to hypoxia-reoxygenation and killed 3 days after hypoxia. Group 2 (n = 10) was subjected to hypoxia-reoxygenation and treated with vitamin E (30 IU/kg/d intraperitoneally) for the next 3 days, and killed. Group 3 (n = 10) rats served as controls. The histopathology of the intestinal lesions in group 1 animals was characteristic of ischemic injury and ranged from superficial epithelial damage with villous shortening to transmural necrosis. In the vitamin E-treated animals these lesions were milder. The malondialdehyde levels of group 1 were significantly higher than those of the other two groups (P < .001). This study shows that oxidant-mediated lipid peroxidation injury plays a central role in mediating hypoxia-induced intestinal necrosis and suggests that vitamin E may play a therapeutic role in NEC.  相似文献   

19.
BACKGROUND: The difference between clinic and ambulatory average daytime blood pressures is frequently taken as a surrogate measure of the 'white-coat effect' (i.e. the pressor reaction triggered in the patient by the physician's visit). OBJECTIVE: To assess the reproducibility of this difference and its relationship with clinic and average ambulatory daytime blood pressure levels. DESIGN AND METHODS: These issues were addressed with two large groups of subjects in whom both clinic and ambulatory blood pressures were measured, namely 783 outpatients with systolic and diastolic essential hypertension [Group 1, aged 50.8+/-9.4 years (mean +/- SD)], participating in standardized Italian trials of antihypertensive drugs, and 506 elderly patients (group 2, age 71+/-7 years) with isolated systolic hypertension, participating in the European Syst-Eur trial. RESULTS: The clinic-daytime blood pressure difference for the essential systolic and diastolic hypertensive patients (group 1) was 13.6+/-14.3 mmHg for systolic and 9.1+/-8.6 mmHg for diastolic blood pressure (P always < 0.01). This difference for the elderly patients with isolated systolic hypertension (group 2) was 21.2+/-16.0 mmHg for systolic and only 1.3+/-10.2 mmHg for diastolic blood pressure (P < 0.01 and P < 0.05, respectively). In both studies little or no systematic clinic-daytime difference could be observed for heart rate. The reproducibility of the clinic-daytime blood pressure difference, tested for 108 essential systolic and diastolic hypertensive patients from group 1 and 128 isolated systolic hypertensives from group 2, was invariably lower than that both of daytime and of clinic blood pressure values. Finally, the clinic-daytime blood pressure difference was progressively higher for increasing levels of clinic blood pressure and progressively lower for higher levels of ambulatory daytime blood pressure. CONCLUSIONS: Thus, the clinic-daytime blood pressure difference has a limited reproducibility; depends not only on clinic but also on daytime average blood pressure, which means that its size is a function of the blood pressure criteria employed for selection of the patients in a trial; and is never associated with a systematic clinic-daytime difference in heart rate, which further questions its use as a reliable surrogate measure of the true pressor response induced in the patient by the doctor's visit.  相似文献   

20.
alpha-Tocopherol (alpha-TOH) can promote lipid peroxidation in human low density lipoprotein (LDL) unless co-antioxidants are present that eliminate the chain-carrying alpha-tocopheroxyl radical (alpha-TO.) (Bowry, V. W., Mohr, D., Cleary, J., and Stocker, R. (1995) J. Biol. Chem. 270, 5756-5763). Interferon-gamma inhibits human monocyte/macrophage-facilitated LDL lipid peroxidation via induction of cellular tryptophan degradation and production and release of 3-hydroxyanthranilic acid (3HAA) (Christen, S., Thomas, S. R., Garner, B., and Stocker, R. (1994) J. Clin. Invest. 93, 2149-2158). We now report on the mechanism of antioxidant action of 3HAA. 3HAA directly reduced alpha-TO. in UV-exposed micellar dispersions of alpha-TOH or in LDL incubated with soybean 15-lipoxygenase (SLO), as assessed by electron paramagnetic resonance spectroscopy. 3HAA did not inhibit SLO enzyme activity. Anthranilic acid, which lacks the phenoxyl group, was incapable of reducing alpha-TO.. 3HAA dose-dependently inhibited the peroxidation of surface phospholipids and core cholesteryl esters in LDL exposed to SLO, peroxyl radicals (ROO.), or Cu2+; oxidants that convert alpha-TOH to alpha-TO.. In all cases, sparing of LDL's alpha-TOH, but not ubiquinol-10 (CoQ10H2), was observed until the majority of 3HAA was consumed. Addition of 3HAA or ascorbate prevented further consumption of alpha-TOH and accumulation of lipid hydroperoxides when added to aqueous or lipophilic ROO.-oxidizing LDL after complete and partial consumption of CoQ10H2 and alpha-TOH, respectively. In contrast, addition of urate, an efficient ROO. scavenger incapable of scavenging alpha-TO., did not efficiently inhibit ongoing lipid peroxidation. Oxidation of 3HAA-supplemented human plasma by aqueous ROO. resulted in the successive consumption of ascorbate, CoQ10H2, 3HAA, bilirubin, alpha-TOH, and urate. Lipid peroxidation was prevented as long as ascorbate, CoQ10H2, and 3HAA were present, but subsequently proceeded as a free-radical chain reaction concomitant with alpha-TOH, bilirubin, and urate consumption. Addition of 3HAA to aqueous ROO.-oxidizing plasma, after complete consumption of ascorbate and CoQ10H2, strongly inhibited ongoing lipid peroxidation and consumption of alpha-TOH, bilirubin, and urate immediately and as efficiently as did ascorbate. These findings demonstrate that 3HAA is a highly efficient co-antioxidant for plasma lipid peroxidation by virtue of its ability to interact with alpha-TO. in lipoproteins. Since interferon-gamma is the principal inducer of tryptophan degradation and release of 3HAA by monocytes/macrophages, this may represent a localized extracellular antioxidant defense against LDL oxidation in inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号