首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fiber-loop cavity ring-down spectroscopy (CRDS) is a highly sensitive spectroscopic absorption technique which has shown considerable promise for the analysis of small-volume liquid samples. We have developed a new light coupling method for fiber-loop CRDS, which overcomes two disadvantages of the technique: low efficiency light coupling into the cavity and high loss per pass. The coupler is based on a 45° reflective notch polished between 10 and 30 μm into the core of a large-core-diameter (365 μm) optical fiber, and allows for nearly 100% light coupling into the cavity, with a low loss per pass (<4%). The coupler has the additional advantage that the input and output light is spatially separated on opposite sides of the fiber. The detection sensitivity of a fiber-loop CRD spectrometer employing the new coupling method is established from ring-down measurements on aqueous rhodamine 6G (Rh6G) at 532 nm. The results are compared with data obtained using the same light source and detector, but a conventional bend-coupled small-core-diameter (50 μm) optical fiber loop. With our new coupler, a detection limit of 0.11 cm(-1) is found, which corresponds to detection of 0.93 μM Rh6G in a volume of only 19 nL. This is an improvement of over an order of magnitude on our bend-coupled small-core optical fiber results, in which a detection limit of 5.3 cm(-1) was found, corresponding to a detection of 43 μM Rh6G in a volume of 20 pL.  相似文献   

2.
In earlier studies, it was demonstrated that the sensitivity of absorbance detection in liquid chromatography (LC) can be improved significantly by using cavity ring-down spectroscopy (CRDS). Thus far, CRDS experiments have been performed using visible laser light at fixed standard wavelengths, such as 532 nm. However, since by far most compounds of analytical interest absorb in the ultraviolet (UV), it is of utmost importance to develop UV-CRDS. In this study, as a first step towards the deep-UV region, LC separations with CRDS detection (using a previously described liquid-only cavity flow cell) at 457 and 355 nm are reported for standard mixtures of dyes and nitro-polyaromatic hydrocarbons (nitro-PAHs), respectively. For the measurements in the blue range a home-built optical parametric oscillator (OPO) system, tunable between 425 and 478 nm, was used, achieving a baseline noise of 2.7 x 10(-6) A.U. at 457 nm, improving upon the sensitivity of conventional absorbance detection (typically around 10(-4) A.U.). An enhancement of the sensitivity can be seen at 355 nm as well, but the improvement of the baseline noise (1.3 x 10(-5) A.U.) is much less pronounced. The sensitivity at 355 nm is limited by the quality of the UV-CRDS mirrors that are currently available: whereas the ring-down times as obtained at 457 nm are around 70-80 ns for the eluent, they are only 20-25 ns at 355 nm. Critical laser characteristics for LC-CRDS measurements, such as pulse length and mode structure, are given and prospects for going to shorter wavelengths are discussed.  相似文献   

3.
Gong Y  Li B 《Applied optics》2008,47(21):3860-3867
A theoretical model based on the ray-transfer matrix is developed for the pulsed cavity ring-down (CRD) technique to numerically investigate the influence of the geometric parameters of the pulsed-CRD arrangement on the CRD signal. By fitting the spatial distribution of the pulsed laser beam to that of the TEM(00) cavity mode, the geometric parameters are optimized to obtain perfect matching between the laser beam and the ring-down cavity. It is indicated by the numerical simulations that as long as the laser power exiting the ring-down cavity is fully collected, a single exponential-decay signal, identical to the perfectly-matched CRD signal, is obtained in the mismatching case to determine accurately the cavity decay time. Intensity fluctuations appear in the mismatched CRD signal if the laser power exiting the ring-down cavity is not fully collected. Both the conventional exponential decay fitting approach and a linear fitting procedure are employed to analyze these mismatched CRD signals and the latter is recommended to make an accurate pulsed-CRD measurement.  相似文献   

4.
Fiber-loop ring-down spectroscopy (FLRDS) is a recently developed absorption spectroscopic technique suitable for very small liquid samples. It is based on measurements of the optical decay constant of laser intensity in a loop made of optical waveguide material. This decay constant changes as small liquid samples containing absorbing species are introduced into the loop. In this report, it is demonstrated that one can also obtain the optical decay constant using a continuous wave laser beam that is intensity modulated and then coupled into an optical fiber loop. The inherent exponential decay in the fiber loop introduces a phase shift of the light emitted from the loop with respect to the pumping beam. By measuring this phase shift, one can readily determine the concentration of the analyte introduced between the two fiber ends and a model is established to describe the relationship. It is demonstrated that this technique, dubbed phase-shift fiber-loop ring-down spectroscopy (PS-FLRDS), is well suited as an absorption detector for any flow system in which the optical absorption path is limited by the instrument architecture. By measuring the phase angle as a function of concentration of 1,1'-diethyl-4,4'-dicarbocyanine iodide in dimethyl sulfoxide, the detection limit was determined as approximately 6 microM for a 30-40-microm absorption path. A temporal resolution of approximately 100 ms was demonstrated by a rapid displacement of the solutions between the two fiber ends. Proof-of-principle use of the PS-FLRDS detection in capillary flow systems using a commercial four-way microcross established that the alignment of the fiber and the capillary can be made simple and effective, while retaining both a low detection limit and a fast response.  相似文献   

5.
The application of evanescent wave cavity ring-down spectroscopy (EW-CRDS) in monitoring electrogenerated species within a thin-layer electrochemical cell is demonstrated. In the proof-of-concept experiments described, ferricyanide, Fe(CN)6(3-), was produced by the transport-limited oxidation of ferrocyanide, Fe(CN)6(4-), in a thin-layer solution cell (25-250 microm) formed between an electrode and the hypotenuse of a fused-silica prism. The prism constituted one element of a high-finesse optical cavity arranged in a triangular ring geometry with light being totally internally reflected at the silica/solution interface. The cavity was pumped with the output (approximately 417 nm) of a single-mode external cavity diode laser, which was continuously scanned across the cavity modes. The presence of electrogenerated ferricyanide within the resulting evanescent field, beyond the optical interface, was detected by the enhanced loss of light trapped within the cavity, as measured by the characteristic cavity ring down. In this way, the EW-CRDS technique is sensitive to absorption in only the first few hundred nanometers of solution above the silica surface. The cavity ring-down response accompanying both cyclic voltammetric and step potential chronoamperometry experiments at a variety of electrode-surface distances is presented, and the results are shown to be well reproduced in modeling by finite element methods. The studies herein thus provide a foundation for further applications of EW-CRDS combined with electrochemistry.  相似文献   

6.
Cavity ring-down spectroscopy is applied to the liquid phase by placing the target solution directly into the optical cavity. We demonstrate that solutions in the cavity can be stirred and more importantly monitored in a flow. We report a minimum detectable absorption of 10(-6) cm(-1) for a range of organic solvents. This detection limit corresponds to picomolar concentrations for strong absorbers.  相似文献   

7.
Optical extinction by homogeneous, pure water droplets of 30 to 70 microm diameter produced by a vibrating orifice aerosol generator has been studied by pulsed cavity ringdown (CRD) spectroscopy at lambda=560 nm under ambient conditions. Experimental sensitivity of better than 1% achieved in measurements of CRD times enabled detection of changes in laser light losses per pass due to changes in the number and size of particles within the laser beam volume. By systematically changing the droplet size in the cavity while recording the CRD time, a periodic modulation in the value of the loss per pass was observed. The modulation is caused by the oscillatory nature of the extinction efficiency, which was subsequently inferred and compared with the results of theoretical calculations based on Mie theory.  相似文献   

8.
We present a spectrometer for sensitive absorption measurements in liquids across broad spectral bandwidths. The spectrometer combines the unique spectral properties of incoherent supercontinuum light sources with the advantages of cavity ring-down spectroscopy, which is a self-calibrating technique. A custom-built avalanche photodiode array is used for detection, permitting the simultaneous measurement of ring-down times for up to 64 different spectral components at nanosecond temporal resolution. The minimum detectable absorption coefficient was measured to be 3.2 × 10(-6) cm(-1) Hz(-1/2) at 527 nm. We show that the spectrometer is capable of recording spectral differences in trace levels of blood before and after hemolysis.  相似文献   

9.
The application of phase-shift, fiber-loop, ring-down spectroscopy (PS-FLRDS) as an on-line detector for capillary electrophoresis (CE) of biomolecules is demonstrated. CE was conducted using a custom-designed capillary/fiber interface coupled to an absorption detector, which is based on the ring-down of an optical signal in a closed fiber waveguide loop. The ring-down times were obtained by measuring the phase difference between intensity modulated light entering and exiting the fiber loop. The incorporation of a microlens to enhance transmission through the sample gap led to an improvement of the sensitivity by up to 80% compared to the square-cut fiber and a reduction in the detection limit. The performance of the PS-FLRDS absorption technique as an online detector was characterized by flow injection through a capillary. Good repeatability and linear response were obtained, and the detection limit using the lensed fiber/capillary interface system was determined to be alpha(min) = 1.6 cm(-1) for an absorption path of approximately 30 microm. PS-FLRDS coupled to CE was also applied to the analysis of human serum albumin (HSA) by using a NIR dye as a noncovalent label. The excess free dye and the dye/protein complex were resolved. The labeling coefficient was determined to be approximately 6, and good repeatability of peak areas (RSD = 8.7%) was obtained for the analysis of HSA. Furthermore, an excellent linear response (R2 > 0.99) was obtained between the peak areas and concentrations of HSA. The detection limit of labeled HSA was determined to be 1.67 microM.  相似文献   

10.
We report on use of cavity ring-down spectroscopy (CRDS) as a means to detect and quantify ion sputtering of refractory metal species. CRDS measurements are made with a neodymium:YAG-pumped optical parametric oscillator laser system in the 375-400 nm region. CRDS sputtering measurements are presented for argon ions incident on iron, aluminum, molybdenum, and titanium. The measurements are based on absorption from fine-structure levels of the electronic ground-state multiplets. For each species, characteristic spectra are provided, the dependence of sputtered particle number density on the beam current is examined, measured densities are compared with a sputter model, and detection limits are determined. For iron, aluminum, and titanium we probe multiple fine-structure levels within the ground-state multiplet and obtain information on their relative populations.  相似文献   

11.
Huang H  Lehmann KK 《Applied optics》2008,47(21):3817-3827
In cavity ring-down spectroscopy (CRDS), residual or stress-induced birefringence (10(-7)-10(-6) rad) of supermirrors will lift the polarization degeneracy of TEM(00) modes and generate two new polarization eigenstates in the cavity with small resonant frequency splitting (approximately 0.1 kHz); the new eigenstates are nearly linearly polarized. When both modes are excited simultaneously, the intracavity polarization state will evolve as the energy decays in the cavity. Without polarization analysis, such mode beating would not be observable. However, real supermirrors have a linear polarization-dependent loss (dichroism) that leads to a change in the loss rate as the polarization state evolves and thus to deviation from the expected single-exponential decay. We develop a model for the evolution of the intracavity polarization state and intensity for a cavity with both birefringence and polarization-dependent loss in the mirrors. We demonstrate, experimentally, that these parameters (both magnitudes and directions) can be extracted from a series of measurements of the cavity decay and depolarization of the transmitted light.  相似文献   

12.
Müller T  Müller D  Dubois R 《Applied optics》2005,44(9):1657-1666
We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet-visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km(-1) was found for the extinction coefficient for an 11-day period in March.  相似文献   

13.
Cavity ring-down spectroscopy was explored as a means to measure atmospheric optical extinction. Ambient air was sampled through a window on the campus of the University of Florida and transported to a ring-down cell fashioned from standard stainless steel vacuum components. When a copper vapor laser operating at 10 kHz is employed, this arrangement allowed for nearly continuous monitoring of atmospheric extinction at 510 and 578 nm. We have characterized the system performance in terms of detection limit and dynamic range and also monitored a change in atmospheric extinction during a nearby wildfire and fireworks exhibition. The sensitivity and compatibility with automation of the technique renders it useful as a laboratory-based measurement of airborne particulate matter.  相似文献   

14.
We present initial results obtained from an optical absorption sensor for the monitoring of ambient atmospheric nitrogen dioxide concentrations (0-200 ppb). This sensor utilizes cavity attenuated phase shift spectroscopy, a technology related to cavity ringdown spectroscopy. A modulated broadband incoherent light source (a 430-nm LED) is coupled to an optically resonant cavity formed by two high-reflectivity mirrors. The presence of NO(2) in the cell causes a phase shift in the signal received by a photodetector that is proportional to the NO(2) concentration. The sensor, which employed a 0.5-m cell, was shown to have a sensitivity of 0.3 ppb in the photon (shot) noise limit. Improvements in the optical coupling of the LED to the resonant cavity would allow the sensor to reach this limit with integration times of 10 s or less (corresponding to a noise equivalent absorption coefficient of <1 x 10(-8) cm(-1) Hz(-1/2)). Over a 2-day-long period of ambient atmospheric monitoring, a comparison of the sensor with an extremely accurate and precise tunable diode laser-based absorption spectrometer showed that the CAPS-based instrument was able to reliably and quantitatively measure both large and small fluctuations in the ambient nitrogen dioxide concentration.  相似文献   

15.
The particular features of gold have generated widespread interest for applications in different areas of science and technology. Notably, gold nanoparticles can be prepared with different sizes and forms and can be easily functionalized with a wide range of ligands. Developing effective experimental techniques to characterize such properties is thus important. In this work, photoacoustic spectroscopy was used to explore the relationship between the nanoparticle size and the optical absorption coefficient (at 405 nm and 532 nm) of gold colloid solutions, according to the Beer–Lambert’s law. A correlation between this optical parameter and the nanoparticle size was found. In addition, for comparison purposes, conventional UV–visible spectroscopy was used for measuring the absorbance at these two wavelengths. Very good agreement was obtained between the optical properties measured by the two methodologies at 405 nm. However, large discrepancies were obtained when measurements were performed at 532 nm. At the latter wavelength, the extent of radiation dispersion is too large for the Beer–Lambert’s law to be valid when the conventional spectroscopy technique is used. Unlike the UV–visible spectroscopy, the photoacoustic method is minimally affected by radiation dispersion effects. Thus, the photoacoustic method presents fewer limitations in that regard in characterizing the optical properties of metallic colloidal suspensions.  相似文献   

16.
Hodges JT  Looney JP  van Zee RD 《Applied optics》1996,35(21):4112-4116
We have investigated the effects of laser bandwidth on quantitative cavity ring-down spectroscopy using the (r)R transitions of the b(ν = 0)?X(ν = 0) band of molecular oxygen. It is found that failure to account properly for the laser bandwidth leads to systematic errors in the number densities determined from measured ring-down signals. When the frequency-integrated expression for the ring-down signal is fitted and measured laser line shapes are used, excellent agreement between measured and predicted number densities is found.  相似文献   

17.
Snyder KL  Zare RN 《Analytical chemistry》2003,75(13):3086-3091
We have demonstrated the use of cavity ring-down spectroscopy (CRDS) as a detector for high performance liquid chromatography (HPLC). For this use, we have designed and implemented a Brewster's angle flow cell such that cavity ring-down spectroscopy can be performed on microliter volumes of liquids. The system exhibits a linear dynamic range of 3 orders of magnitude (30 nM to 30 microM quinalizarin at 470 nm) for static measurements and 2 orders of magnitude (0.5 microM to 50 microM) for HPLC measurements. For the static measurements, the baseline noise is 2.8 x 10(-6) AU rms and 1.0 x 10(-5) AU peak-to-peak, and for the HPLC separations, it is 3.2 x 10(-6) AU rms and 1.3 x 10(-5) AU peak-to-peak. The baseline noise is determined after the data are smoothed by an 11-point boxcar average. The peak areas detected from HPLC separations are reproducible to within 2-3%. The HPLC mass detection limit for a molecule with epsilon = 9 x 10(3) M(-1) cm(-1) in a 300-microm path length cell (illuminated volume, 0.5 microL) is reported as 2.5 x 10(-8) g/mL. These results were obtained using a simple pulsed CRDS system and are comparable to, if not better than, a high-quality commercial UV-vis absorption detector for the same path length.  相似文献   

18.
全球气候变化给人类生活带来的影响受到世界各国的普遍关注,温室气体是影响和改变全球气候的关键因素之一,限制和降低温室气体排放量成为人类发展的重要议题.温室气体大多都在10"(每百万个气体分子中所含该种气体分子的个数)级别,且气体分子结构差异大,因此传统方法很难获得较高的精度,而光腔衰荡光谱法是能解决该难题的关键技术之一....  相似文献   

19.
The wavelength dependence of the retardation induced by a photoelastic modulator (PEM) is a central issue in multichannel modulator-based spectroscopic ellipsometry and reflectance difference spectroscopy (RDS), where the optical signal is detected simultaneously at different wavelengths. Here we present a refined analysis of the modulator crystal's retardation and its effect on the signal quality. Two retardation correction schemes that take into account the actual wavelength dependence of the stress-optic coefficient are introduced. It is demonstrated experimentally that both methods provide a better correction than the procedure currently used in multichannel RDS. We define quality factors to evaluate the actual performance of the multichannel detection system as compared with a wavelength adaptive single-channel experiment. These quality factors thus provide a useful guideline for choosing the appropriate PEM retardation or reference wavelength in a multichannel experiment.  相似文献   

20.
The presence of trace water vapor in process gases such as phosphine, used for compound semiconductor epitaxial growth, can negatively affect the optical and electrical properties of the final device. Therefore, sensitive H2O measurement techniques are required to monitor precursor purity and detect unacceptable contamination levels. A commercial cavity ring-down spectrometer that monitors an H2O absorption line at a wavelength of 1392.53 nm was investigated for service in high purity PH3. Spectral parameters such as the line shape of water vapor in the presence of PH3 as well as background features due to PH3 were measured at different pressures and incorporated into the data analysis software for accurate moisture readings. Test concentrations generated with a diffusion vialbased H2O source and dilution manifold were used to verify instrument accuracy, sensitivity, linearity, and response time. H2O readings at 13.2 kPa corresponded well to added concentrations (slope=0.990+/-0.01) and were linear in the tested range (0-52.7 nmol mol-1). The analyzer was sensitive to changes in H2O concentration of 1.3 nmol mol-1 based on 3sigma of the calibration curve intercept for a weighted linear fit. Local PH3 absorption features that could not be distinguished from the H2O line were present in the purified PH3 spectra and resulted in an additional systematic uncertainty of 9.0 nmol mol-1. Equilibration to changing H2O levels at a flow rate of 80 std cm3 min-1 PH3 occurred in 10-30 minutes. The results indicate that cavity ring-down spectroscopy (CRDS) at 1392.53 nm may be useful for applications such as on-line monitoring (and dry-down) of phosphine gas delivery lines or the quality control of cylinder sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号