首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric pressure glow discharge (APGD) plasma in air has high application value.In this paper,the methods of generating APGD plasma in air are discussed,and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied.It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress.Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field,the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated.Further,through combining electrode structures,a large area of APGD plasma in air is generated.On the other hand,by using the method of increasing the density of initial electrons,millimeter-gap glow discharge in atmospheric pressure air is formed,and a maximum gap distance between electrodes is 8 ram.By using the APGD plasma surface treatment device composed of contact electrodes,the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained.The present paper provides references for the researchers of industrial applications of plasma.  相似文献   

2.
Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the currentvoltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.  相似文献   

3.
In order to achieve atmospheric pressure diffuse dielectric barrier discharge (DBD) in air, a helical–helical electrode structure with a floating-voltage electrode is proposed in this paper. Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak (< 3×106 Vm−1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical–helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.  相似文献   

4.
Atmospheric cascade discharges with pulsed discharge and radio frequency(RF)discharge were experimentally investigated by the temporal evolution of discharge spatial profile and intensity.The indium tin oxide(ITO)coated glass was employed as the transparent electrode to capture the discharge distribution above the electrode surface.It is demonstrated that in the pulsed discharge with dielectric barrier,the first discharge at the rising edge of pulse voltage is uniformly ignited and then forms an expanding plasma ring on the ITO electrode surface,which shrinks to the same diameter as that of bare stainless steel electrode with the generation of second discharge at the falling edge of pulse voltage.The discharge profiles along the electrode surface and discharge gap of the successive RF discharge are dependent on the intensity and spatial distribution of residual plasma species generated by the pulsed discharge,which is determined by the time interval between the pulsed discharge and RF discharge.It is demonstrated that the residual plasma species before the RF discharge ignition help to achieve the stable operation of RF discharge with elevated intensity.  相似文献   

5.
Atmospheric air discharge above the surface of water is an effective method for water treatment.The leakage current and Joule heating of water are reduced by the air gap,which raises the energy efficiency of the water treatment.However,the application of this kind of discharge is limited by a pair of conflicting factors:the chemical efficiency grows as the discharge gap distance decreases,while the spark breakdown voltage decreases as the gap distance decreases.To raise the spark breakdown voltage and the chemical efficiency of atmospheric pressure water surface discharge,both the high-voltage electrode and the ground electrode are suspended above the water surface to form an electrode-water-electrode discharge system.For this system,there are two potential discharge directions:from one electrode to another directly,and from the electrodes to the water surface.The first step in utilizing the electrode-water-electrode discharge is to find out the discharge direction transition criterion.In this paper,the discharge direction transition criterions of spark discharge and streamer discharge are presented.By comparing the discharge characteristics and the chemical efficiencies,the discharge propagating from the electrodes to the water surface is proved to be more suitable for water treatment than that propagating directly between the electrodes.  相似文献   

6.
Based on the idea that a large number of charged particles can be generated by a high-frequency alternating current(AC)dielectric barrier discharge(DBD),and charged particles can be accelerated directionally by a direct current(DC)electric field,a new type of ionic wind formation method is proposed in this paper.To this end,a carbon fiber spiral electrode serves as the generation electrode and a metal rod electrode as the collection electrode,with AC and DC potentials applied respectively to the generation electrode and the collection electrode to form an AC-DC coupled electric field.Under the action of the coupled electric field,a dielectric barrier discharge is formed on the carbon fiber spiral electrode,and the electrons generated by the discharge move from the generation electrode to the collection electrode in the opposite direction of the electric field vectors.During the movement,energy is transferred to the gas molecules by their colliding with neutral gas molecules,thereby forming a directional gas stream movement,i.e.ionic wind.In the research process,it is verified through electric field simulation analysis and discharge experiment that this method can effectively increase the number of charged particles in the discharge process,and the velocity of the ionic wind is nearly doubled.On this basis,the addition of a third electrode forms a distinct discharge region and an electron acceleration region,which further increases its velocity.The experimental result shows that the ionic wind speed reaches up to 2.98 m s^?1.Thanks to the ability of the electrode structure to generate an atmospheric pressure DBD plasma and form an ionic wind,we can create a noise-free air purification device without resorting to a fan,with this device having good application prospects in the field of air purification.  相似文献   

7.
《等离子体科学和技术》2016,18(10):1005-1011
The surface dielectric barrier discharge(SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.  相似文献   

8.
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap,the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.  相似文献   

9.
In this paper, an asymmetric electrode geometry(the misalignment between the ends of highvoltage and grounded electrodes) is proposed in order to investigate the effects of the transverse electric field on nanosecond pulsed dielectric barrier discharge(DBD). The results show that diffuse discharge manifests in the misaligned region and the micro-discharge channel in the aligned region moves directionally. Moreover, the diffuse discharge area increases with the decrease of the discharge gap and pulse repetition frequency, which is consistent with the variation of the moving velocity of the micro-discharge channel. When airflow is introduced into the discharge gap in the same direction as the transverse electric field, the dense filamentary discharge region at the airflow inlet of asymmetric electrode geometry is larger than that of symmetric electrode geometry. However, when the direction of the airflow is opposite to that of the transverse electric field, the dense filamentary discharge region of asymmetric electrode geometry is reduced. The above phenomena are mainly attributed to the redistribution of the space charges induced by the transverse electric field.  相似文献   

10.
The DC-driven atmospheric-pressure microplasma is generated in a helium gas flowing through the metal tube cathode and is brought into contact with the surface of the water with the immersed Pt anode. By adjusting the gas flow, discharge current and gap distance, self-organized patterns are observed and varied sequentially from the homogeneous spot to the ring-like shape,distinct spot shape and the gearwheel shape on the water surface. The electrode temperature is measured and the gas temperature of the plasma discharge is calculated through the numericalfitting of the second positive system of the spectrum of N2 molecules. It is shown that the pattern transition is related to the electrode and gas temperatures of the plasma. Moreover, specific discretization features of the patterns are shown to appear at certain gas temperatures.  相似文献   

11.
Nonlinear behavior of glow discharge plasmas is experimentally investigated.The glow is generated between a barrier semiconductor electrode,Chromium doped namely Gallium Arsenide(Ga As:Cr),as a cathode and an Indium–Tin Oxide(ITO) coated glass electrode as an anode,in reverse bias.The planar nature of electrodes provides symmetry in spatial geometry.The discharge behaves oscillatory in the time domain,with single and sometimes multiperiodicities in plasma current and voltage characteristics.In this paper,harmonic frequency generation and transition to chaotic behavior is investigated.The observed current–voltage characteristics of the discharge are discussed in detail.  相似文献   

12.
A detective method of a negative corona discharge by means of an external electrode is presented. The relationship between an area of the external electrode and a detected voltage waveform is examined experimentally. This experimental study is carried out with the use of a rod-plane air gap. The results obtained will be applicable to problems associated with silos, ducts, and high-voltage equipment.  相似文献   

13.
In this study, we computationally examined the dynamics of dielectric barrier discharge in hydrogen sulfide. The simulations were performed with a 1d3v particle-in-cell/Monte Carlo collision model in which a parallel-plate electrode geometry with dielectrics was used. Particle recombination process is represented in the model. The discharge mode was found to be initially Townsend discharge developing from the cathode to the anode, and at the peak of the current, a more stable glow discharge develops from the anode to the cathode. A higher applied voltage results in sufficient secondary electrons to trigger a second current peak, and then the current amplitude increases. As the frequency is increased, it leads to the advance of the phase and an increase in the amplitude of the current peak. A higher dielectric permittivity also makes the discharge occur earlier and more violently in the gap.  相似文献   

14.
To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in air.The effect of the needle radius and the gas pressure on the discharge characteristics are tested.The results show that when the gap is larger than 10 μm,the relation between the breakdown voltage and the gap looks like the Paschen curve;while below 10 μm,the breakdown voltage is nearly constant in the range of the tested gap.However,at the same gap distance,the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen's law.The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge.A simple model is used to explain the non-normality of breakdown in the micro-gaps.The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.  相似文献   

15.
Precise control of the discharge in space and time is of great significance for better applications of discharge plasma. Here, we used a femtosecond laser filament to trigger and guide a high-voltage DC pulse discharge to achieve spatiotemporal control of the discharge plasma. In space, the discharge plasma is distributed strictly along the channel generated by the femtosecond laser filament. The breakdown voltage threshold is reduced, and the discharge length is extended. In time, the electrical parameters such as the electrode voltage and the electrode gap affect discharge delay time and jitter. By optimizing the parameters, we can achieve sub-nanosecond jitter of the discharge. Based on the spatiotemporal control of the discharge, we applied filament-triggered discharge for one-dimensional composition measurements of the gas flow field. Besides, the technique shows great potential in studying the spatiotemporal evolution of discharge plasma.  相似文献   

16.
In this paper,a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions.The field strength distributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis(FEA) method,and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of efective discharge range(EDR) on the plate were also investigated and discussed.The simulation results show that the probe with a wide tip will cause a larger efective discharge range on the plate;the field strength in the gap is notably higher than that induced by the sharp tip probe;the efective discharge range will increase linearly with the rise of excitation voltage,and decrease nonlinearly with the rise of gap length.In addition,probe dimension,especially the width/height ratio,afects the efective discharge range in diferent manners.With the width/height ratio rising from 1:1 to 1:10,the efective discharge range will maintain stable when the excitation voltage is around 50 V.This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower.Furthermore,when the gap length is 5 nm and the excitation voltage is below 20 V,the diameter of EDR in our simulation is about 150 nm,which is consistent with the experiment results reported by other research groups.Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship.  相似文献   

17.
Usually,the electrical breakdown of dielectric barrier discharge(DBD) at atmospheric pressure leads to a filamentary non-homogeneous discharge,However,it is also possible to obtain a diffuse DBD in homogeneous form,called atmospheric pressure glow discharge(APGD).We obtained a uniform APGD in helium and in the mixture of argon with alcohol,and studied the electrical characteristics of helium APGD.It if found that the relationship between discharge current and source frequency is different depending on the difference in gas gap when the applied voltage is kept constant.The discharge current shows an increasing trend with the increased frequency when gas gap is 0.8cm ,but the discharge current tends to decrease with the increased frequency when the gas gap increases.The discharge current always increases with the increased applied voltage when the source frequency is kept constant.We also observed a glow-like discharge in nitrogen at atmospheric pressure.  相似文献   

18.
1. IntroductionThere are many reports concerning the dischargemodes at high pressure. The modes of dielectricbarrier discharge (DBD) could be divided mainlyinto two kinds f filament discharge or micro-dischargeand glow discharge or diffused discharge. The fila-ment discharge is a typical characteristic of traditional ozone generator [l], but the characteristics ofDBD in monoatomic gases such as helium, neon andargon at high pressure are'Pfglow-like diffused dis-charge [2]. For air, three co…  相似文献   

19.
In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.  相似文献   

20.
A multi-electrode array is commonly applied in a plasma sparker to generate stable acoustic pulses.In this paper,the effects of the electrode configuration on the performance of a plasma sparker have been investigated.In terms of the load electrical characteristics,the electrode radius and distance have negligible influence on the electric characteristics,whereas a larger electrode number results in a smaller voltage and a larger current but has little effect on the load energy.Regarding the acoustic characteristics,both the expansion and collapse pulses can be increased by decreasing the electrode tip radius.the influence of the electrode number and electrode gap distance on the amplitude of the expansion pulse was found to be negligible.And the amplitude of the collapse pulse decreases significantly with increasing electrode number.Increasing the electrode number decreases the energy efficiency for intense bubble interactions,thus,a small electrode tip radius and a small electrode number are preferred for the design of a plasma sparker if the total discharge energy is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号