首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
伏思静  王静 《热加工工艺》2007,36(22):30-33
采用粉末冶金与原位合成相结合的方法制备了不同V/Ti原子比的(Ti,V)C/Fe基复合材料,用X射线衍射(XRD)、扫描电镜(SEM)研究了该复合材料的物相结构和显微组织。研究结果表明:原位合成的(Ti,V)C增强相颗粒细小,大部分小于2μm,在α-Fe基体中均匀分布。随着V,Ti比的提高,(Ti,V)C晶格常数减小,且呈线性下降,(Ti,V)C增强相颗粒形态由不规则状趋于球形。  相似文献   

2.
以45钢、钛铁、生铁等为主要原料,在大气环境下、利用中频感应电炉、通过添加含氮附加物、采用原位反应铸造法制备了Ti(C,N)颗粒增强铁基复合材料。研究了所制备复合材料的油润滑摩擦磨损性能、干摩擦磨损性能以及冲击磨料磨损性能。结果表明,在有润滑和无润滑条件下的干摩擦,复合材料的耐磨性能都远大于正火45钢;在中、低冲击工况下,复合材料磨料磨损性能优于高锰钢和高铬铸铁。  相似文献   

3.
王静 《热加工工艺》2008,37(8):44-47
采用粉末冶金与原位合成相结合的方法制备了(Ti,V)C/Fe复合材料,用X射线衍射(XRD)、扫描电镜(SEM)研究了该复合材料的物相结构和显微组织,用MM-200磨损试验机对复合材料进行了耐磨性实验.结果表明,复合材料的相组成为(Ti,V)C和a-Fe;合成的硬质相(Ti,V)C颗粒细小,在珠光体基体中均匀分布;在重载干滑动磨损条件下,该复合材料显示了很好的耐磨性能.  相似文献   

4.
以钒铁粉、石墨粉、铁粉和氮气为原料,采用粉末冶金技术合成了V(C,N)颗粒增强铁基复合材料,从热力学、热分析、致密化和微观结构等方面对该复合材料进行了研究.结果表明,在烧结温度范围内,发生了FeV+C+N2=V(C,N+Fe反应,合成了V(C,N)硬质相;制备的复合材料在1200℃烧结时,其密度达到最大值;复合材料主要相为V(C,N)和γ-Fe,所合成的硬质相V(C,N)颗粒细小,在铁基体中分布均匀.  相似文献   

5.
采用自制的多元复式碳氮化物陶瓷粉末 ((Ti,W,Ta) (C,N) p)制备 (Ti,W,Ta) (C,N) p/Ti(C,N)基金属陶瓷。研究了 (Ti,W,Ta) (C,N) p 粉末的组织结构特征及其加入对金属陶瓷的组织及性能的影响。结果表明 ,多元复式碳氮化物粉末的晶格常数与元素的固溶度有很好的对应关系 ,调整粉末中元素的固溶度可控制粉末的晶格常数 ,进而控制材料的性能。 Ti(C,N)基金属陶瓷中 (Ti,W,Ta) (C,N) p 粉末的加入 ,有利于重金属元素 W和 Ta向粘结相中扩散 ,从而降低了硬质相在粘结相中的溶解度 ,阻碍了晶粒长大。(Ti,W,Ta) (C,N) p/Ti(C,N)基金属陶瓷各项性能指标优于 Ti(C,N)基金属陶瓷和国外对应的金属陶瓷牌号 CT5 2 5的产品。强化机制主要表现为细晶强化与固溶强化。  相似文献   

6.
Ti(C,N)_w/Ti(C,N)基金属陶瓷的组织与力学性能研究   总被引:1,自引:0,他引:1  
向阳开  徐智谋 《硬质合金》2006,23(3):129-133
采用Ti(C,N)晶须和颗粒复合粉末(Ti(C,N)w+Ti(C,N)p)制备Ti(C,N)w/Ti(C,N)基金属陶瓷。研究了复合粉末对金属陶瓷组织及性能的影响。结果表明,Ti(C,N)w的加入,金属陶瓷的各项力学性能都得到了提高。组织表现为环形相结构特征,与Ti(C,N)基金属陶瓷相比,双层环形相结构所占比例增大,且尺寸加厚。烧结组织中Ti(C,N)w的长径比大于临界长径比,在强化金属陶瓷方面起着重要的作用。环形相使Ti(C,N)w与基体界面结合紧密,增韧机制主要表现为裂纹桥联和裂纹偏转,拔出效应不明显。  相似文献   

7.
《铸造技术》2015,(4):920-924
研究了Ti(C,N)颗粒增强铁基复合材料的热处理工艺对其组织和性能的影响。结果表明,通过热处理可以显著改变Ti(C,N)颗粒增强铁基复合材料的组织状态,进一步提高Ti(C,N)颗粒增强铁基复合材料的力学性能。Ti(C,N)颗粒增强铁复合材料最佳的热处理制度800℃×1.0 h+550℃×1.0 h油冷,此时复合材料的力学性能得到最好的匹配:抗弯强度1 883.88 MPa、洛氏硬度58.24HRC、冲击韧度18.69 J/cm2。  相似文献   

8.
采用粉末冶金与原位合成相结合的方法制备了(Ti,V)C/Fe基复合材料,用X射线衍射、扫描电镜研究了该复合材料的物相结构和显微组织.结合热分析和高温X射线衍射,对Fe-Ti-V-C体系的反应机理进行研究.结果表明:反应合成的复合材料的相组成为(Ti,V)C和α-Fe,细小的球状(Ti,V)C颗粒均匀分布在珠光体基体上.Fe-Ti-V-C体系的反应机理为,首先在765.7℃发生Fe的同素异构转变,即α-Fe→γ-Fe,以及钒的碳化反应FeV+C=VC+Fe;其次在1058.5℃,Ti与Fe共熔而形成低共熔体Ti2Fe;在1140.4℃,C与Ti2Fe反应生成TiC;最后,随着温度的继续升高,TiC和VC形成了(Ti,V)C固溶体.  相似文献   

9.
结合我国资源特点,以45钢、钛铁、生铁等为主要原料,研究了在大气环境下采用原位反应铸造法制备Ti(C,N)颗粒增强铁基复合材料的工艺方法。结果表明,利用中频感应电炉熔炼合金,通过向铁液中添加含氮附加物原位反应铸造法制备Ti(C,N)颗粒增强铁基复合材料的技术是可行的;复合材料组织由细粒状珠光体加上针状珠光体基体和Ti(C,N)增强颗粒组成;材料铸态综合力学性能得到了最优的组合:抗弯强度1 532.67 MPa,洛氏硬度58.5 HRC,冲击韧度7.18 J/cm2。  相似文献   

10.
采用粉末冶金和原位合成相结合的方法合成V(C,N)颗粒增强铁基复合材料,用扫描电镜、X射线衍射等测试方法对试样进行了组织结构分析,并探讨了原位合成V(C,N)的机理.结果表明,石墨与氮气的存在降低了σ-FeV相的稳定性,使其分解为崮溶大量V的Fe,C、N与V发生反应生成V(C,N);原位合成的复合材料主要相组成为V(C,N)和γ-Fe,所合成的硬质相V(C,N)颗粒细小,在铁基体中均匀分布.在重载十滑动摩擦条件下,V(C,N)颗粒增强铁基复合材料显示出良好的耐磨性.  相似文献   

11.
原位自生TiC和(Ti,W)C增强Fe基复合材料的研究   总被引:2,自引:1,他引:2  
潘卫东  任英磊  才庆魁  邱克强 《铸造》2004,53(4):276-279
利用块体原材料原位合成10%TiC-Fe和(Ti,W)C-Fe两种复合材料,采用扫描电镜分析了复合材料的微观结构,利用X射线分析了相组成.结果表明,在TiC-Fe复合材料中,TiC作为唯一的第二相呈现粒状和条状两种形态.分析认为,粒状相为亚共晶相,而条状第二相为共晶相.通过用W替代部分Ti,成功地制备了10%(Ti,W)C-Fe复合材料,其中(Ti,W)C作为唯一的第二相比较均匀地分布在Fe基体中,其形态大部分呈粒状,条状相较少.在粒状(Ti,W)C相中,中心富Fe,而边缘W、Ti和C元素的分布是均匀的.与TiC相比,(Ti,W)C的密度更接近Fe,更适合作为大型铸件的增强相.  相似文献   

12.
采用铸造-热处理复合工艺制备V8C7颗粒增强铁基表面复合材料试样,并用SEM、XRD等方法,观察分析了其组织形貌,用TUKON2100型显微硬度计测量了其硬度,用ML-100磨料磨损试验机进行了不同载荷下的磨损试验。结果表明,所制备的V8C7颗粒增强铁基表面复合材料试样的最大显微硬度是2333HV0.05;在室温条件下,当载荷为15N时,其平均耐磨性约是灰铸铁的13倍,在很大程度上提高了铁基体的耐磨性能。  相似文献   

13.
利用铸造-热处理工艺原位反应生成了TiC颗粒增强铁基表面梯度复合材料,对该复合材料的组织进行了研究,并深刻剖析了该复合材料组织的形成机理。结果表明:原位合成的TiC增强表面梯度复合材料大致分为三层;每层之间最大的区别是生成的TiC颗粒的大小及形状不同。远离基体侧的反应层接近于大块状的TiC,显然是颗粒基本上没有扩散;反应层与基体结合界面良好、无间隙,结合层TiC颗粒平均大小为2~4μm。因此,各梯度层TiC颗粒的大小决定了此种复合材料的不同层具有不同的硬度、冲击性能、抗拉强度和耐磨性等。  相似文献   

14.
高义民 《铸造》2012,61(9):985-990
综述了铸渗法制备陶瓷颗粒增强铁基表面复合材料的研究现状.重点介绍了近年来关于表面复合材料的强韧化设计与制备技术方面取得的最新研究进展.基于复合材料的微观界面,阐明了制备过程中值得关注的问题,并对未来的发展进行了展望.  相似文献   

15.
用SEM、XRD检测浇注凝固后位于铸型表面的复合粉料压坯组织结构的变化,证实用铸造烧结技术可以在铸件表面原位生成碳化钒颗粒增强铁基表面复合材料.探讨了粉料压坯快速完成钒的碳化反应和烧结致密化的机理,用MM200磨损试验机检测了碳化钒颗粒增强铁基表面复合材料的耐磨性.  相似文献   

16.
利用铸造复合热处理工艺制备V8C7颗粒增强铁基复合材料的磨损试样,用SEM、XRD观察了材料的组织形貌.在室温条件下,选用ML-100磨料磨损试验机,采用三氧化二铝磨料,研究了不同体积分数V8C7颗粒对V8C7增强铁基复合材料磨损性能的影响.结果表明,采用此工艺制备的V8C7增强铁基复合材料的耐磨性是灰铸铁的11.7倍;当V8C7颗粒体积分数逐渐增大时,V8C7颗粒增强铁基复合材料的相对耐磨性先增大后减小.  相似文献   

17.
利用铸造-热处理工艺原位反应生成了碳化钽颗粒增强铁基表面梯度复合材料。应用DSC、SEM和XRD等检测手段对该复合材料的反应温度、宏观组织、微观组织、矿物组成和微观硬度进行了确定和分析,并分析了该复合材料的形成过程和机理。结果表明:在1160℃保温1 h原位生成了碳化钽颗粒增强铁基表面复合材料,其表面梯度大致分为三层,分别是碳化钽纳米层、碳化钽微米层及碳化钽分散层;显微硬度值达到灰口铸铁的5.5~7.0倍,最大值为2123 HV0.02。初步机理分析认为,钽与碳之间的原位反应过程经过了溶解-扩散-原位反应-再扩散的过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号