首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-3800热模拟试验机,研究了GCr15轴承钢在变形温度800~1200℃、应变速率0.01~10 s-1、真应变0.7条件下的热变形行为,建立了其基于峰值应力的本构方程,分析了不同应变量的热加工图,并建立了再结晶区域图。结果表明:变形温度越高,应变速率越小,流变应力越低,材料越容易发生动态再结晶;确定了其在真应变0.6及0.7时的安全区与失稳区,并得到了试验钢发生部分动态再结晶的热变形工艺参数。  相似文献   

2.
采用Gleeble-3500热模拟试验机对65Mn钢进行热压缩试验,变形温度850~1150℃、应变速率0.02~20 s~(-1),最大真应变1.0,研究材料在上述试验条件下的动态再结晶行为,以及变形条件对再结晶晶粒尺寸的影响。结果表明:试验钢的真应力-真应变曲线在高温、低应变速率条件下出现明显峰值,随着温度的升高和应变速率的降低,临界应变变小,有利于动态再结晶发生;奥氏体再结晶晶粒尺寸与变形参数相关,应变速率降低,再结晶晶粒尺寸增大;变形温度降低,有利于再结晶晶粒尺寸细化。  相似文献   

3.
采用Gleeble-3500热模拟试验机模拟了屈服强度550 MPa级桥梁钢轧板单道次热压缩变形过程,得到了试验钢的真应力-真应变曲线,分析了变形温度和应变速率对动态再结晶行为的影响,并建立了试验钢的再结晶图。结果表明,在较高的变形温度和较低的应变速率下,动态再结晶易进行。实验在动态再结晶激活能为460.14 kJ/mol时,建立了试验钢动态再结晶动力学模型。  相似文献   

4.
张楚博  米振莉  毛小玲  徐梅 《轧钢》2018,35(1):17-22
采用Gleeble-3500热模拟试验机对超高强DP980钢进行热压缩试验,研究其在变形温度为900~1 200℃、应变速率为0.05~30s~(-1)条件下的动态再结晶行为,分析了变形温度和应变速率对真应力-真应变曲线的影响。结果表明:超高强DP980钢在变形过程中,存在动态再结晶和动态回复两种软化机制,且随着温度的升高和应变速率的降低,临界应变越小,动态再结晶越容易发生;同时,得到了发生动态再结晶时的形变激活能,建立了峰值应变模型、动态再结晶临界应力模型和动态再结晶动力学模型。  相似文献   

5.
通过热模拟和微观组织的观察,对含Ti高强结构钢HG785在轧制过程中动态再结晶行为进行了研究;并探讨了变形条件对HG785钢奥氏体动态再结晶的影响。结果表明:试样的应变速率越小,越有利于动态再结晶进行,且随应变速率增大,动态再结晶晶粒变小;材料的变形温度越高,越有利于动态再结晶进行,但随着变形温度的提高,奥氏体动态再结晶晶粒会粗化。  相似文献   

6.
用Gleeble-1500热模拟试验机对中碳V-N微合金钢在不同变形温度(900~1050℃)及不同变形速率(0.005~30 s-1)的奥氏体区热变形行为进行研究。通过建立真应力-真应变曲线、动态再结晶图、功率耗散效率因子(η)图和应变速率敏感因子(m)图综合分析其热变形行为。结果表明,试验钢在1050℃、1 s-1变形条件下发生了动态再结晶,其真应力-真应变曲线、动态再结晶图、m图等方法得出的结果相互吻合。其中η图与m图差异很小,但由于应变速率敏感因子具有合理的物理意义,因此建议利用m图分析材料的热变形行为和选取最佳热变形工艺参数。  相似文献   

7.
采用Gleeble-3800热模拟试验机研究了低碳高铌钢在不同变形参数下的动态再结晶行为及奥氏体再结晶晶粒尺寸的变化规律。结果表明:低碳高铌钢在较高温度下变形,越易发生动态再结晶行为,再结晶晶粒尺寸也随之增加至32μm;较低应变速率可显著促进试验钢发生完全再结晶,再结晶晶粒的数量与尺寸随之明显增加。  相似文献   

8.
陈永利  赵阳  周雪娇  黄建国 《轧钢》2016,33(3):12-15
以一种超高强钢为研究对象,对其进行了热力学计算分析和热模拟压下实验,采用金相组织和扫描形貌分析等手段,研究了压下变形参数对超高强钢再结晶的影响规律。研究结果表明:变形速率越大,变形温度越低,实验钢动态再结晶越不容易发生;变形温度为950 ℃,变形速率为0.1 s-1时,真应变为0.1,奥氏体晶粒尺寸为6524 μm;真应变为05时,稳态连续再结晶形成的奥氏体沿着原来奥氏体向晶内长大,尺寸较为均匀,晶粒细化到4821 μm;真应变为08时,发生非连续再结晶,晶粒细化到3045 μm,呈现多边形等轴状。  相似文献   

9.
对Ti-25V-15Cr-0.2Si阻燃钛合金在温度为950~1100℃,应变速率为0.001~1 s~(-1)条件下进行热压缩试验,研究了该合金在β相区变形时的动态再结晶行为。结果表明,该合金的热变形机制主要是由动态再结晶支配的,而动态再结晶新晶粒主要是通过弓弯形核机制来形成的。当应变速率降低和变形温度升高时动态再结晶易于发生;当应变速率为0.01~0.1 s~(-1),变形温度为950~1050℃时,动态再结晶使晶粒细化;当变形温度高于1100℃,应变速率低于0.001 s~(-1)时,动态再结晶晶粒粗化。为了确定在不同变形条件下的动态再结晶体积分数和动态再结晶晶粒尺寸,分别建立了该合金动态再结晶动力学和动态再结晶晶粒尺寸预测模型。  相似文献   

10.
为了研究Mg-Zn-Zr-Gd合金的热压缩变形行为,采用Gleeble-3500型热模拟试验机,在变形温度为300~400℃,变形速率为0.001~1 s-1条件下对合金进行热压缩实验。分析了在不同的热压缩条件下合金的真应力-真应变曲线,通过引入Z参数建立了相关流变应力本构方程,同时观察了合金的微观组织演变。结果表明:合金在热压缩变形过程中主要发生了动态再结晶,且合金的流变应力随着应变速率降低和温度升高而减小。在低变形温度或高应变速率下进行热压缩变形时,再结晶晶粒比较细小,但是动态再结晶进行不充分,动态再结晶仅仅发生在晶界处且分布不均匀,仍然存在原始大晶粒。随着变形温度的升高和应变速率的降低,再结晶区域明显增加,再结晶晶粒也逐渐长大。根据热加工图分析得到合金最佳的热加工成形工艺区域为:温度为350~400℃,应变速率为0.1~1 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号