首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song YC  Kwon SJ  Woo JH 《Water research》2004,38(7):1653-1662
The performance of thermophilic and mesophilic temperature co-phase anaerobic digestions for sewage sludge, using the exchange process of the digesting sludge between spatially separated mesophilic and thermophilic digesters, was examined, and compared to single-stage mesophilic and thermophilic anaerobic digestions. The reduction of volatile solids from the temperature co-phase anaerobic digestion system was dependent on the sludge exchange rate, but was 50.7-58.8%, which was much higher than 46.8% of single-stage thermophilic digestion, as well as 43.5% of the mesophilic digestion. The specific methane yield was 424-468 mL CH(4) per gram volatile solids removed, which was as good as that of single-stage mesophilic anaerobic digestion. The process stability and the effluent quality in terms of volatile fatty acids and soluble chemical oxygen demand of the temperature co-phase anaerobic digestion system were considerably better than those of the single-stage mesophilic anaerobic processes. The destruction of total coliform in the temperature co-phase system was 98.5-99.6%, which was similar to the single-stage thermophilic digestion. The higher performances on the volatile solid and pathogen reduction, and stable operation of the temperature co-phase anaerobic system might be attributable to the well-functioned thermophilic digester, sharing nutrients and intermediates for anaerobic microorganisms, and selection of higher substrate affinity anaerobic microorganisms in the co-phase system, as a result of the sludge exchange between the mesophilic and thermophilic digesters.  相似文献   

2.
Thermophilic anaerobic digestion presents an advantageous way for stabilization of sludge from wastewater treatment plants. Two different strategies for changing operational process temperature from mesophilic (37 degrees C) to thermophilic (55 degrees C) were tested using two continuous flow stirred tank reactors operated at constant organic loading rate of 1.38 g VS/l reactor/day and hydraulic retention time of 20 days. In reactor A, the temperature was increased step-wise: 37 degrees C-->42 degrees C-->47 degrees C-->51 degrees C-->55 degrees C. While in reactor B, the temperature was changed in one-step, from 37 degrees C to the desired temperature of 55 degrees C, The results showed that the overall adaptation of the process for the step-wise temperature increment took 70 days in total and a new change was applied when the process was stabilized as indicated by stable methane production and low volatile fatty acids concentrations. Although the one-step temperature increase caused a severe disturbance in all the process parameters, the system reached a new stable operation after only 30 days indicating that this strategy is the best in changing from mesophilic to thermophilic operation in anaerobic digestion plants.  相似文献   

3.
Batch anaerobic biodegradation tests with different alkylbenzene sulphonates (LAS) at increasing concentrations were performed in order to investigate the effect of LAS homologues on the anaerobic digestion process of sewage sludge. Addition of LAS homologues to the anaerobic digesters increased the biogas production at surfactant concentrations 5-10 g/kg dry sludge and gave rise to a partial or total inhibition of the methanogenic activity at higher surfactant loads. Therefore, at the usual LAS concentration range in sewage sludge, no adverse effects on the anaerobic digesters functioning of a wastewater treatment plant (WWTP) can be expected. The increase of biogas production at low surfactant concentrations was attributed to an increase of the bioavailability and subsequent biodegradation of organic pollutants associated with the sludge, promoted by the surfactant adsorption at the solid/liquid interface. When the available surfactant fraction in the aqueous phase instead of the nominal surfactant concentration was used to evaluate the toxicity of LAS homologues, a highly significant relationship between toxicity and alkyl chain length was obtained. Taking into account the homologue distribution of commercial LAS in the liquid phase of the anaerobic digesters of a WWTP, an EC(50) value of 14 mg/L can be considered for LAS toxicity on the anaerobic microorganisms.  相似文献   

4.
Huoqing Ge 《Water research》2010,44(1):123-4768
Pre-treatment is used extensively to improve degradability and hydrolysis rate of material being fed into digesters. One emerging process is temperature phased anaerobic digestion (TPAD), which applies a short (2 day) 50-70 °C pre-treatment step prior to 35 °C digestion in the main stage (10-20 days). In this study, we evaluated a thermophilic-mesophilic TPAD against a mesophilic-mesophilic TPAD treating primary sludge. Thermophilic-mesophilic TPAD achieved 54% VS destruction compared to 44% in mesophilic-mesophilic TPAD, with a 25% parallel increase in methane production. Measurements of soluble COD and NH4+-N showed increased hydrolysis extent during thermophilic pre-treatment. Model based analysis indicated the improved performance was due to an increased hydrolysis coefficient rather than an increased inherent degradability, suggesting while TPAD is suitable as an intensification process, a larger main digester could achieve similar impact.  相似文献   

5.
The effects of microwave (MW) pretreatment, staging and digestion temperature on anaerobic digestion were investigated in a setup of ten reactors. A mesophilic reactor was used as a control. Its performance was compared to single-stage mesophilic and thermophilic reactors treating pretreated and non-pretreated sludge, temperature-phased (TPAD) thermophilic-mesophilic reactors treating pretreated and non-pretreated sludge and thermophilic-thermophilic reactors also treating pretreated and non-pretreated sludge. Four different sludge retention times (SRTs) (20, 15, 10 and 5 d) were tested for all reactors. Two-stage thermo-thermo reactors treating pretreated sludge produced more biogas than all other reactors and removed more volatile solids. Maximum volatile solids (VS) removal was 53.1% at an SRT of 15 d and maximum biogas increase relative to control was 106% at the shortest SRT tested. Both the maximum VS removal and biogas relative increase were measured for a system with thermophilic acidogenic reactor and thermophilic methanogenic reactor. All the two-stage systems treating microwaved sludge produced sludge free of pathogen indicator bacteria, at all tested conditions even at a total system SRT of only 5 d. MW pretreatment and staging reactors allowed the application of very short SRT (5 d) with no significant decrease in performance in terms of VS removal in comparison with the control reactor. MW pretreatment caused the solubilization of organic material in sludge but also allowed more extensive hydrolysis of organic material in downstream reactors. The association of MW pretreatment and thermophilic operation improves dewaterability of digested sludge.  相似文献   

6.
Ponsá S  Ferrer I  Vázquez F  Font X 《Water research》2008,42(14):3972-3980
In conventional single-stage anaerobic digestion processes, hydrolysis is regarded as the rate-limiting step in the degradation of complex organic compounds, such as sewage sludge. Two-stage systems have been proposed to enhance this process. However, so far it is not clear which are the best conditions for a two-stage anaerobic digestion process of sewage sludge, in terms of temperature and hydraulic retention time of each stage. The aim of this work was to determine the optimal conditions for the hydrolytic-acidogenic stage treating real sludge with a high concentration of total solids (40-50gL(-1)) and volatile solids (25-30gL(-1)), named high concentration sludge. The variables considered for this first stage were: hydraulic retention time (1-4 days) and temperature (55 and 65 degrees C). Maximum volatile fatty acids generation was obtained at 4 days and 3 days hydraulic retention time for 55 degrees C and 65 degrees C, respectively. Consequently, 4 days hydraulic retention time and temperature of 55 degrees C were set as the working conditions for the hydrolytic-acidogenic stage treating high concentration sludge. The results obtained when operating with high concentration sludge were compared with a low concentration sludge consisting of 17-28gL(-1) total solids and 13-21gL(-1) volatile solids. The effect of decreasing the influent sludge pH, when working at the optimal conditions established, was also evaluated.  相似文献   

7.
Anaerobic digestion is an appropriate technique for the treatment of sludge before final disposal and it is employed worldwide as the oldest and most important process for sludge stabilization. In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization, enhancement of dewatering of the sludge, reduction of the numbers of pathogens and could be realized at relatively low cost especially at low temperatures. The present study investigates (a) the differences between mesophilic and thermophilic anaerobic digestion of sludge and (b) the effect of the pre-treatment at 70 degrees C on mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. The pre-treatment step showed very positive effect on the methane potential and production rate upon subsequent thermophilic digestion of primary sludge. The methane production rate was mostly influenced by the pre-treatment of secondary sludge followed by mesophilic and thermophilic digestion whereas the methane potential only was positively influenced when mesophilic digestion followed. Our results suggest that the selection of the pre-treatment duration as well as the temperature of the subsequent anaerobic step for sludge stabilization should depend on the ratio of primary to secondary sludge.  相似文献   

8.
Liu S  Zhu N  Li LY  Yuan H 《Water research》2011,45(18):5959-5968
Two representative thermophilic bacterial strains (T1 and T2) were isolated from a one-stage autothermal thermophilic aerobic digestion pilot-scale reactor. 16S rRNA gene analysis indicated that they were Hydrogenophilaceae and Xanthomonodaceae. These isolated strains were inoculated separately and/or jointly in sewage sludge, to investigate their effects on sludge stabilization under thermophilic aerobic digestion condition. Four digestion conditions were tested for 480 h. Digestion without inoculation and inoculation with strain T2, as well as joint- inoculation with strains T1 and T2, achieved 32.6%, 43.0%, and 38.2% volatile solids (VS) removal, respectively. Removal in a digester inoculated with stain T1 only reached 27.2%. For the first 144 h, the three inoculated digesters all experienced higher VS removal than the digester without inoculations. Both specific thermophilic strains and micro-environment significantly affected the VS removal. DGGE profiles revealed that the isolated strains T1 and T2 can successfully establish in the thermophilic digesters. Other viable bacteria (including anaerobic or facultative microbes) also appeared in the digestion system, enhancing the microbial activity.  相似文献   

9.
S Bayr  J Rintala 《Water research》2012,46(15):4713-4720
Anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge were studied for the first time in semi-continuously fed continuously stirred tank reactors (CSTR) in thermophilic conditions. Additionally, in batch experiments, methane potentials of 210 and 230 m3CH4/t volatile solids (VS)added were obtained for primary, and 50 and 100 m3CH4/tVSadded for secondary sludge at 35 °C and 55 °C, respectively. Anaerobic digestion of primary sludge was shown to be feasible with organic loading rates (OLR) of 1-1.4 kgVS/m3d and hydraulic retention times (HRT) of 16-32 d resulting in methane yields of 190-240 m3CH4/tVSfed. Also the highest tested OLR of 2 kgVS/m3d and the shortest HRT of 14-16 d could be feasible, if pH stability is confirmed. Co-digestion of primary and secondary sludge with an OLR of 1 kgVS/m3d and HRTs of 25-31 d resulted in methane yields of 150-170 m3CH4/tVSfed. In the digestion processes, cellulose and hemicellulose degraded while lignin did not. pH adjustment and nitrogen deficiency needs to be considered when planning anaerobic digestion of pulp and paper mill wastewater sludges.  相似文献   

10.
Ge H  Jensen PD  Batstone DJ 《Water research》2011,45(4):1597-1606
It is well established that waste activated sludge with an extended sludge age is inherently slow to degrade with a low extent of degradation. Pre-treatment methods can be used prior to anaerobic digestion to improve the efficiency of activated sludge digestion. Among these pre-treatment methods, temperature phased anaerobic digestion (TPAD) is one promising method with a relatively low energy input and capital cost. In this study, an experimental thermophilic (50-70 °C)-mesophilic system was compared against a control mesophilic-mesophilic system. The thermophilic-mesophilic system achieved 41% and 48% volatile solids (VS) destruction during pre-treatment of 60 °C and 65 °C (or 70 °C) respectively, compared to 37% in the mesophilic-mesophilic TPAD system. Solubilisation in the first stage was enhanced during thermophilic pre-treatment (15% at 50 °C and 27% at 60 °C, 65 °C and 70 °C) over mesophilic pre-treatment (7%) according to a COD balance. This was supported by ammonia-nitrogen measurements. Model based analysis indicated that the mechanism for increased performance was due to an increase in hydrolysis coefficient under thermophilic pre-treatment of 60 °C (0.5 ± 0.1 d−1), 65 °C (0.7 ± 0.2 d−1) and 70 °C (0.8 ± 0.2 d−1) over mesophilic pre-treatment (0.2 ± 0.1 d−1), and thermophilic pre-treatment at 50 °C (0.12 ± 0.06 d−1).  相似文献   

11.
In many anaerobic digestion processes for the treatment of the sludge produced in wastewater treatment plants, the hydrolysis of the organic matter has been identified as the rate limiting step. This study is focused on the effect of ultrasonic pretreatment of raw sewage sludge before being fed to the mesophilic and the thermophilic anaerobic digestion. From particle size reduction, COD disintegration degree and biodegradability test, 11,000kJ/kg TS was estimated as the optimal specific energy in ultrasonic pretreatment. Moreover, the use of pretreated sludge improved significantly the COD removal efficiency and biogas production in lab-scale anaerobic digesters when compared with the performance without pretreatment, specially under mesophilic conditions. During ultrasonic pretreatment, the diffusion of polycyclic aromatic hydrocarbons (PAH) compounds to the aqueous phase was stated by a reduction in the pretreated sludge micropollutants content. With sonication, naphthalene was better removed than without this pretreatment, particularly in the mesophilic digester. However, pyrene removal remained at same efficiency level with and without ultrasonic pretreatment.  相似文献   

12.
Previous studies on the microbial degradation of individual phthalic acid esters (PAEs) have demonstrated that the compounds with short ester hydrocarbon chains are easily biodegraded and mineralized, but PAEs with long ester chains are less susceptible to degradation and some of them are considered recalcitrant. Moreover, they inhibit methanogenesis. However, studies have not been made on the effect of feeding a combination of recalcitrant and biodegradable PAEs into anaerobic digesters treating wastewater sludge. The present study was conducted with wastewater sludge from the Los Angeles Bureau of Sanitation's Hyperion Treatment Plant. Di (2-ethylhexyl) phthalate (DEHP), the most common persistent PAE found in wastewater, and di-n-butyl phthalate (DBP), a common PAE with short ester chains, were sorbed into the sludge fed to a bench-scale digester for a period of 12 weeks. DEHP degradation was always poor, and accumulation of DEHP was correlated with inhibition of the microbial degradation of DBP and with process instability of the test digester. Inhibition of the DBP removal was completely reversed after DEHP addition was discontinued, but biogas production never recovered to the level observed in a control digester. Other process parameters of digester performance were not affected by DEHP accumulation. These results are similar to the toxic effects of long chain fatty acids on sludge digestion, suggesting that DEHP or its degradation products affect all the microbial populations in the anaerobic bioreactor. Our results imply that high levels of DEHP or other recalcitrant PAEs in wastewater sludge are likely to compromise methanogenesis and removal of biodegradable PAEs in sludge digesters.  相似文献   

13.
Du W  Parker W 《Water research》2012,46(2):539-546
Processes involved in volatile organic sulfur compound (VOSC) generation and degradation in mesophilic and thermophilic digestion of methionine were identified, kinetically studied and a mathematical model was established. MM was found to be the only VOSC directly generated from methionine degradation. MM was methylated to form DMS and both MM and DMS were subsequently degraded to H2S. Mixed-second order kinetics were found to best fit the VOSC generation and conversion processes. The kinetic constants (average values) for MM generation and methylation and MM and DMS degradation were estimated to be 0.0032, 0.0047, 0.027, and 0.013 l g−1 h−1 respectively at 35 °C and 0.0069, 0.0012, 0.0083, 0.005 l g−1 h−1 respectively at 55 °C. More rapid MM release and slower VOSC decline at thermophilic temperature implied that VOSC could be more problematic at thermophilic temperatures as compared to mesophilic conditions.  相似文献   

14.
Adsorption onto sewage sludge is an important process for the elimination of tributyltin (TBT) from wastewater. However as the disposal of sewage sludge to agricultural land is a significant route for recycling biosolids, there exists an issue as to whether the potential long-term build-up of organotins in agricultural soil is acceptable, from a human health and environmental point of view. For the sustainable use of biosolids in agriculture it is essential to control and reduce the quantities of persistent pollutants such as organotins in sewage sludge. In this study, a sampling program was designed to establish the levels of TBT (and other organotins) in sewage sludge and their reduction during anaerobic treatment and processing prior to disposal. Experiments were also undertaken to assess the fate of TBT in laboratory scale anaerobic digesters where the influence of digester operating parameters could be evaluated. Organotin concentrations were determined using capillary gas chromatography with flame photometric detection. The results demonstrated that the majority of TBT remained concentrated in the solid phase (sewage sludge). Concentrations of TBT in sewage sludge were approximately 18 mg kg(-1) (dry weight) and both laboratory experiments and fieldwork demonstrated that degradation of TBT during anaerobic digestion of sludge was minimal.  相似文献   

15.
The survival of three enteroviruses (polio 1, coxsackie B3 and echo 1) and a rotavirus (SA-11) was studied under laboratory conditions. The effects of temperature, dissolved oxygen, detention time, sludge source and virus type on virus inactivation were determined. Temperature was the single most important factor influencing the rate of virus inactivation. No significant differences were found for virus inactivation rates at dissolved oxygen levels between 0.9 and 5.8 mg/l. However, the inactivation rate of the viruses under aerobic conditions was found to be significantly greater than the inactivation rate under anaerobic conditions (−0.77log10/day vs −0.33 log10/day). Sludge source, detention time and virus type did not significantly influence the rate of virus inactivation.  相似文献   

16.
Shen R  Andrews SA 《Water research》2011,45(2):944-952
The worldwide detection of pharmaceuticals and personal care products (PPCPs) in the aquatic environment and drinking water has been a cause for concern in recent years. The possibility for concurrent formation of nitrosamine DBPs (disinfection by-products) during chloramine disinfection has become another significant concern for delivered drinking water quality because of their potent carcinogenicity. This study demonstrates that a group of PPCPs containing amine groups can serve as nitrosamine precursors during chloramine disinfection. Molar yields higher than 1% are observed for eight pharmaceuticals, with ranitidine showing the strongest potential to form N-nitrosodimethylamine (NDMA). The molar conversion increases with the Cl2:N mass ratio, suggesting that dichloramine is relevant to the formation of NDMA from these precursors. Although the trace level of PPCPs in the environment suggests that they may not account for the majority of nitrosamine precursors during the disinfection process, this study demonstrates a connection between the transformation of PPCPs and the formation of nitrosamines during chloramine disinfection. This both expands the pool of potential nitrosamine precursors, and provides a possible link between the presence of trace levels of certain PPCPs in drinking water sources and potential adverse health effects.  相似文献   

17.
The occurrence of nineteen pharmaceutically active compounds and personal care products was followed monthly for 12 months after various stages of treatment in an advanced wastewater reclamation plant in Gwinnett County, GA, U.S.A. Twenty-four hour composite samples were collected after primary clarification, activated sludge biological treatment, membrane filtration, granular media filtration, granular activated carbon (GAC) adsorption, and ozonation in the wastewater reclamation plant. Compounds were identified and quantified using high performance liquid chromatography/tandem mass spectrometry (LC-MS/MS) and gas chromatography/mass spectrometry (GC-MS) after solid-phase extraction. Standard addition methods were employed to compensate for matrix effects. Sixteen of the targeted compounds were detected in the primary effluent; sulfadimethoxine, doxycycline, and iopromide were not found. Caffeine and acetaminophen were found at the highest concentrations (∼105 ng/L), followed by ibuprofen (∼104 ng/L), sulfamethoxazole and DEET (∼103 ng/L). Most of the other compounds were found at concentrations on the order of hundreds of ng/L. After activated sludge treatment and membrane filtration, the concentrations of caffeine, acetaminophen, ibuprofen, DEET, tetracycline, and 17α-ethynylestradiol (EE2) had decreased by more than 90%. Erythromycin and carbamazepine, which were resistant to biological treatment, were eliminated by 74 and 88%, on average, by GAC. Primidone, DEET, and caffeine were not amenable to adsorption by GAC. Ozonation oxidized most of the remaining compounds by >60%, except for primidone and DEET. Of the initial 16 compounds identified in the primary effluent, only sulfamethoxazole, primidone, caffeine and DEET were frequently detected in the final effluent, but at concentrations on the order of 10-100 ng/L. Removal of the different agents by the various treatment processes was related to the physical-chemical properties of the compounds.  相似文献   

18.
Mu H  Chen Y 《Water research》2011,45(17):5612-5620
The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn2+ from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F420, and the abundance of methanogenesis Archaea.  相似文献   

19.
Seven mixed sewage sludges from different wastewater treatment plants, which have an anaerobic digester in operation, were evaluated in order to clarify the literature uncertainty with regard to the sewage sludge characterisation and biodegradability. Moreover, a methodology is provided to determine the Anaerobic Digestion Model No. 1 parameters, coefficients and initial state variables as well as a discussion about the accuracy of the first order solubilisation constant, which was obtained through biomethane potential test. The results of the biomethane potential tests showed ultimate methane potentials from 188 to 214 mL CH4 g−1 CODfed, COD removals between 58 and 65% and two homogeneous groups for the first order solubilisation constant: (i) the lowest rate group from 0.23 to 0.35 day−1 and (ii) the highest rate group from 0.27 to 0.43 day−1. However, no statistically significant relationship between the ultimate methane potential or the disintegration constant and the sewage sludge characterisation was found. Next, a methodology based on the sludge characterisation before and after the biomethane potential test was developed to calculate the biodegradable fraction, the composite concentration and stoichiometric coefficients and the soluble COD of the sewage sludge; required parameters for the implementation of the Anaerobic Digestion Model No. 1. The comparison of the experimental and the simulation results proved the consistency of the developed methodology. Nevertheless, an underestimation of the first order solubilisation constant was detected when the experimental results were simulated with the solubilisation constant obtained from the linear regression experimental data fitting. The latter phenomenon could be related to the accumulation of intermediary compounds during the biomethane potential assay.  相似文献   

20.
Effect of microwave pretreatment (MW) high temperature (175 °C) and MW intensity to waste activated sludge digested with acclimatized inoculum in single- and dual-stage semi-continuous mesophilic anaerobic digesters at different sludge retention times (SRTs) (20, 10 and 5 days) were investigated. MW pretreatment led to similar sludge stabilization at low SRTs (5 and 10 days). Although lowering MW intensity slightly improved sludge solubilization, it had a negative effect on digestion at low SRTs. Single-stage digesters with MW pretreatment surpass dual-stage digesters performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号