首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金属表面生物陶瓷涂层的研究进展   总被引:4,自引:1,他引:3  
介绍了目前世界上金属表面生物陶瓷涂层制备的几种主要技术手段,比较分析了各种不同技术手段的优缺点,指出了在金属表面制备生物陶瓷涂层所面临的技术难点,提出了解决这一技术难点思路的几点建议。  相似文献   

2.
The facts that most tissues or organs consist of a variety of cells suggest that interactions between different types of cells play critical roles in tissue or organ development.In tissue engineering,the effects of biomaterials on cell-cell interactions have recently attracted increasing attention for better elucidating the mechanisms through which biomaterials promote tissue regeneration.Numerous studies have focused on these effects of biomaterials on cell-cell interactions.In this review,comprehensive information was provided about the existing cell co-culture technologies and the main behavioral modes of cell-cell interactions.The effects of biomaterials on the cell-cell interactions in various types of tissue regeneration have been summarized and discussed.In the end,the existing problems and future perspectives that would help promote the research of biomaterials in tissue engineering have been proposed.This article can help researchers to understand the progress and importance of studying the effects of biomaterials on cell-cell interactions in tissue engineering and to choose the optimal cell-cell co-culture models for designing experiments.  相似文献   

3.
近年来,由于3D打印技术的迅猛发展,有关3D打印技术的应用受到科学界广泛关注,特别是生物医学领域。3D打印材料的瓶颈制约着3D打印技术的发展,特别是用于生物医学领域的打印材料,只有非常局限的几种,但是研究可打印生物医用材料意义重大,经济效益显著。简述了3D打印技术在生物医学工程上的应用。重点综述了用于3D打印的生物医用材料,主要涉及金属、陶瓷、高聚物、复合材料以及生物墨水等,并且阐述了3D打印材料的发展前景。  相似文献   

4.
生物电子学是一门涉及生物学、电子学、化学、物理、材料及信息技术等许多学科的交叉学科,生物电子学发展中的一些科学问题直接与生物材料及其生物相容性研究有关。从生物电子学的概念出发,从微电子植入器件、植入器件相关电极制造技术及表面改性、体外神经芯片表面修饰与改性3个方面,结合本实验室的相关研究工作,讨论了生物电子学领域中的生物材料与生物相容性研究进展,指出了生物材料和生物电子学的交叉是未来科学发展的必然趋势。  相似文献   

5.
Metallic biomaterials used in making hip prosthesis are required to meet expectations in terms of fatigue strength, corrosion resistance, wear resistance, cost and biocompatibility. It is also desirable that the modulus of elasticity they possess is close to the level of the possible bone. Metallic biomaterials face the problem of ion release even though they meet the criteria mentioned above. As a result, the choice of metallic material to be preferred in the manufacture of hip prosthesis can be made by evaluating all these criteria among themselves and by the performances of biomaterials to be compared according to these criteria. In this study, firstly the criteria expected from the metals to be used as biomaterials have been determined. Expert opinions about the subject and criteria determined in accordance with the studies in the literature by using analytical hierarchy process have been graded according to each other. Afterwards, selection of the most appropriate material was ensured by making the order of importance according to the criteria of the candidate materials.  相似文献   

6.
生物材料的离子束表面改性   总被引:6,自引:1,他引:5  
王昌祥  陈治清 《功能材料》1999,30(3):246-248
随着表面处理技术的发展,国内我对如何改善现有的生物材料表面的各种性能,如耐蚀性,耐磨性,生物相容性等进行了研究。各种表面处理的方法受到高度重视,其中离子束表面改性技术,由于其对材料本体无负效应,已被证明是最为成功的一种。本文在综述离子束改性技术在生物材料及器械方面应用的同时,提出将梯度功能材料的新概念与离子束改性技术相结合,用以制备表面性能优异的仿生生物材料。  相似文献   

7.
聚乙二醇及其衍生物改性生物医用材料表面的血液相容性   总被引:1,自引:0,他引:1  
综述了PEG及其衍生物在生物医用材料表面血液相容性改性中的应用,并介绍了对改性后的表面进行表征的常用方法和手段,如反射红外,水接触角,光电子能谱,表面等离子共振,椭圆偏振仪,蛋白质亲和印迹,蛋白质标记等。  相似文献   

8.
The story of Bioglass®   总被引:6,自引:0,他引:6  
Historically the function of biomaterials has been to replace diseased or damaged tissues. First generation biomaterials were selected to be as bio-inert as possible and thereby minimize formation of scar tissue at the interface with host tissues. Bioactive glasses were discovered in 1969 and provided for the first time an alternative; second generation, interfacial bonding of an implant with host tissues. Tissue regeneration and repair using the gene activation properties of Bioglass provide a third generation of biomaterials. This article reviews the 40 year history of the development of bioactive glasses, with emphasis on the first composition, 45S5 Bioglass, that has been in clinical use since 1985. The steps of discovery, characterization, in vivo and in vitro evaluation, clinical studies and product development are summarized along with the technology transfer processes.  相似文献   

9.
A wide variety of materials is being increasingly used in medical practice for the treatment of patients in which the materials come into direct and often sustained contact with the tissues of the body. The commonly-known examples of hip replacements, contact and intraocular lenses and pace-makers serve to emphasize the importance of this subject. Because the body is so well equipped to reject any intruding object, whether that is a bacterium or a splinter of wood, the materials which are to stand any chance of success within this hostile yet sensitive milieu must be chosen very carefully. The subject of biomaterials represents an almost unique blend of physical and biological sciences, and it is becoming increasingly important that these aspects are drawn together to help in the development of quality biomaterials that are able to perform optimally in this environment. The key to this subject lies in the interactions that take place between biomaterials and these tissues and this review is aimed at providing, for the materials scientist, an understanding of the mechanisms of these interactions.  相似文献   

10.
For utilization of highly sophisticated functions of biomaterials in nano-scale functional systems, immobilization of biomaterials on artificial devices such as electrodes via thin film technology is one of the most powerful strategies. In this review, we focus on three major organic ultrathin films, self-assembled monolayers (SAM), Langmuir-Blodgett (LB) films, and layer-by-layer (LBL) assemblies, and from the viewpoints of biomaterial immobilization, typical examples and recent progresses in these film technologies are described. The SAM method allows facile contact between biomaterials and man-made devices, and well used for bio-related sensors. In addition, recent micro-fabrication techniques such as micro-contact printing and dip-pen nanolithography were successfully applied to preparation of biomaterial patterning. A monolayer at the air-water interface, which is a unit structure of LB films, provides a unique environment for recognition of aqueous biomaterials. Recognition and immobilization of various biomaterials including nucleotides, nucleic acid bases, amino acids, sugars, and peptides were widely investigated. The LB film can be also used for immobilization of enzymes in an ultrathin film on an electrode, resulting in sensor application. The LBL assembling method is available for wide range of biomaterials and provides great freedom in designs of layered structures. These advantages are reflected in preparation of thin-film bio-reactors where multiple kinds of enzymes sequentially operate. LBL assemblies were also utilized for sensors and drug delivery systems. This kind of assembling structures can be prepared on micro-size particle and very useful for preparation of hollow capsules with biological functions.  相似文献   

11.
Silks are of central importance as smart natural biomaterials and are attracting increasing attention for their biomimetic potential due to their sophisticated molecular structure, self‐assembly mechanism, impressive mechanical properties, biocompatibility, and biodegradability. The versatility of silk proteins (SP) allows the chemical modification of silk‐based materials with diverse morphologies under harsh conditions. The chemical modification of amino acids within SP enables the expanded generation of new biomaterials and the extension of their potential functional applications. The authors review the current chemical modification strategies and routes for the functionalization of SP.
  相似文献   

12.
The rapid development of microfluidics technology has promoted new innovations in materials science, particularly by interacting with biological systems, based on precise manipulation of fluids and cells within microscale confinements. This article reviews the latest advances in microfluidics‐based biomaterials and biodevices, highlighting some burgeoning areas such as functional biomaterials, cell manipulations, and flexible biodevices. These areas are interconnected not only in their basic principles, in that they all employ microfluidics to control the makeup and morphology of materials, but also unify at the ultimate goals in human healthcare. The challenges and future development trends in biological application are also presented.  相似文献   

13.
Terahertz spectroscopy has long been used as an important measurement tool in fields such as radio astronomy, physical chemistry, atmospheric studies and plasma research. More recently terahertz technology has been used to develop an exciting new technique to investigate the properties of a wide range of biological materials. Although much research remains before a full understanding of the interaction between biomaterials and terahertz radiation is developed, these initial studies have created a compelling case for further scientific study. Also, the potential development of practical tools to detect and identify biological materials such as biological-warfare agents and food contaminants, or of medical diagnostic tools, is driving the need for improved terahertz technology. In particular, improved terahertz sources and detectors that can be used in practical spectroscopy systems are needed. This paper overviews some of the recent measurements of the terahertz spectra of biomaterials and the ongoing efforts to create an all-solid-state technology suitable not only for improved scientific experiments but also for military and commercial applications.  相似文献   

14.
Biomaterials play a critical role in modern medicine as surgical guides, implants for tissue repair, and as drug delivery systems. The emerging paradigm of precision medicine exploits individual patient information to tailor clinical therapy. While the main focus of precision medicine to date is the design of improved pharmaceutical treatments based on “-omics” data, the concept extends to all forms of customized medical care. This includes the design of precision biomaterials that are tailored to meet specific patient needs. Additive manufacturing (AM) enables free-form manufacturing and mass customization, and is a critical enabling technology for the clinical implementation of precision biomaterials. Materials scientists and engineers can contribute to the realization of precision biomaterials by developing new AM technologies, synthesizing advanced (bio)materials for AM, and improving medical-image-based digital design. As the field matures, AM is poised to provide patient-specific tissue and organ substitutes, reproducible microtissues for drug screening and disease modeling, personalized drug delivery systems, as well as customized medical devices.  相似文献   

15.
刘芳  刘咏  周科朝 《材料导报》2003,17(Z1):162-163,169
简要介绍了燃烧合成表面涂层技术这种新兴表面改性技术的原理和应用,并阐述了本单位采用此法在生物陶瓷涂层制备方面的开发和研究.结果表明,燃烧合成制备生物陶瓷涂层有利于提高材料的生物活性和生物相容性,具有较大的应用前景.  相似文献   

16.
杨坤  汤慧萍  李元元 《功能材料》2020,(3):3038-3046
从材料研究的角度,综合评述了粉床电子束3D打印(SEBM)装备与技术的最新进展,对SEBM打印的骨科植入医用金属材料的力学性能以及存在的问题进行了总结。对未来SEBM技术在骨科植入材料领域的发展提出了若干建议。重点讨论了目前制约3D打印技术在骨科植入材料领域规模应用的限制因素和解决方法。  相似文献   

17.
Stabilization of biological materials by freezing is widespread in the fields of medicine and biomaterials research and yet, in the case of hard biomaterials such as dentin, there is not a good understanding of how such treatments might affect the mechanical properties. The freezing and thawing may have a number of different effects on dentin including formation of cracks in the microstructure and denaturation of the collagen. Using high-energy synchrotron X-ray diffraction, the apparent moduli of bovine dentin samples were measured before and after various numbers of freeze–thaw cycles. It was determined that repeated freezing and thawing has no measurable effect on the hydroxyapatite or fibrillar apparent moduli up to 10 cycles. This confirms that the use of low temperature storage for stabilization of dentin is reasonable in cases where stiffness is a property of importance.  相似文献   

18.
辐射技术在生物材料领域的研究及应用进展   总被引:3,自引:0,他引:3  
讨论了辐射接枝、聚合、交联、固化及消毒等辐射技术在生物医学材料的制备、改性和消毒上的研究及应用.  相似文献   

19.
In the area of biomaterials, there has been recent activity in the use of micro- and nanofabrication technology to alter material surfaces for influencing the attachment and growth of cells. We present here a review of this current activity at the interface of biology and material science.  相似文献   

20.
Biocompatibility is the basic requirement of biomaterials for tissue repair. However, the present concept of biocompatibility has a certain limitation in explaining the phenomena involved in biomaterial-based tissue repair. New materials, in particular those for tissue engineering and regeneration, have been developed with common characteristics, i.e. they participate deeply into important chemical and biological processes in the human body and the interaction between the biomaterials and tissues is far more complex.Understanding the interplay between these biomaterials and tissues is vital for their development and functionalization. Herein, we suggest the concept of bioadaptability of biomaterials. This concept describes the three most important aspects that can determine the performance of biomaterials in tissue repair: 1) the adaptability of the micro-environment created by biomaterials to the native microenvironment in situ; 2) the adaptability of the mechanical properties of biomaterials to the native tissue;3) the adaptability of the degradation properties of biomaterials to the new tissue formation. The concept of bioadaptability emphasizes both the material's characteristics and biological aspects within a certain micro-environment and molecular mechanism. It may provide new inspiration to uncover the interaction mechanism of biomaterials and tissues, to foster the new ideas of functionalization of biomaterials and to investigate the fundamental issues during the tissue repair process by biomaterials. Furthermore, designing biomaterials with such bioadaptability would open a new door for repairing and regenerating organs or tissues. In this review, we summarized the works in recent years on the bioadaptability of biomaterials for tissue repair applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号