首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
针对具有约束和扰动的多区域互联电力系统负荷频率控制(load frequency control, LFC)问题,本文提出了一种事件触发分布式模型预测控制(event-triggered distributed model predictive control,ET-DMPC)策略.将大规模互联电力系统分解成多个动态耦合的子系统,考虑发电机变化率约束(generation rate constraint, GRC)和调速器阀门位置限制,建立分布式预测控制优化问题.为了降低系统计算负担,减少计算资源的消耗和浪费,基于预测值和系统实际状态的误差构造事件触发条件.在事件触发机制下,只有子系统满足相应的事件触发条件时,控制器才传输状态信息和求解优化问题,并与邻域子系统交互最优解作用下的关联信息.仿真结果表明,本文提出的控制策略在负荷扰动和系统参数不确定的情况下具有良好的鲁棒性,同时极大地降低了系统的计算负担.  相似文献   

2.
张皓  张洪铭  王祝萍 《控制与决策》2019,34(11):2421-2427
研究存在有界扰动的非线性无人车辆模型的路径跟随问题,提出一种基于事件触发的模型预测控制算法,与现有的基于时间周期的模型预测控制算法相比,可以在保证车辆对参考轨迹跟随准确性的同时减少跟随过程中求解优化问题的计算量,降低在线实时优化的计算负担.最后给出无人车运动学模型的仿真结果,对比所提出的控制算法与传统算法,验证了其有效性.  相似文献   

3.
针对孤岛微电网中分布式发电机的二次控制问题, 本文提出了一种基于动态事件触发机制的分布式协同控制策略, 每一个发电单元引入了动态事件触发机制来辅助通信, 从而节约了微电网中的通信资源. 本文提出了包含内部动态变量的事件触发条件, 根据此变量动态调节事件触发中的阈值, 有效减少控制器的更新频率. 所提出的控制方案是完全分布式的, 每个发电单元仅需自身与邻居之间进行信息交换, 降低了中央控制器以及复杂通信网络的要求, 提高了系统的稳定性. 消除了由于初级控制引起的电压和频率的偏差, 同时, 避免了芝诺行为. 最后, 仿真中搭建孤岛微电网模型验证了本文控制方案的有效性.  相似文献   

4.
本文研究了DoS攻击下网络化控制系统记忆型事件触发预测补偿控制问题. 首先, 由于网络带宽资源有限和系统状态不完全可观测性, 引入了记忆型事件触发函数, 为观测器提供离散事件触发传输方案. 然后, 分析了网络传输通道上发生的DoS攻击. 结合上述记忆型事件触发方案, 在控制节点设计一类新颖的预测控制算法, 节省网络带宽资源并主动补偿DoS攻击. 同时, 建立了基于观测器的记忆型事件触发预测控制的闭环系统, 并且分析稳定性.通过线性矩阵不等式(LMI)和Lyapunov稳定性理论, 建立了控制器、观测器和记忆型事件触发矩阵的联合设计方案,并验证了该方案的可行性. 仿真结果表明, 该方案结合记忆型事件触发机制可以有效补偿DoS攻击, 节约网络带宽资源.  相似文献   

5.
针对通信资源受限的多无人艇(USV)编队控制问题, 本文提出了一种动态事件触发数据传输机制以降低通信频率, 减少控制算法对系统带宽的占用. 首先, 基于滑模和自适应控制算法设计一种全分布式编队控制器, 使得所有编队成员在保持预设队形的同时能够完成对期望轨迹的跟踪. 与现有编队控制器相比, 该控制器不需要通信网络的全局信息. 然后, 基于Lyapunov稳定性理论证明了编队跟踪误差以及所有闭环信号都能达到稳定状态. 此外,该算法能够保证触发时间序列不表现出Zeno行为. 最后, 通过数值仿真验证了全分布式编队控制器的有效性  相似文献   

6.
针对光伏(Photovoltaic, PV)−电池−超级电容直流微电网系统中光伏发电间歇性造成的功率失配问题, 提出一种基于事件触发的无差拍预测控制(Event-triggered deadbeat predictive control, ETDPC)方法, 以实现有效的能量管理. ETDPC方法结合事件触发控制策略和无差拍预测控制策略(Deadbeat predictive control, DPC)的优点, 根据微电网的拓扑结构构建状态空间模型, 用于设计适用于微电网能量管理的触发条件: 当ETDPC的触发条件满足时, ETDPC中无差拍预测控制模块被激活, 可以在一个控制周期内产生最优控制信号, 实现对于扰动的快速响应, 减小母线电压纹波; 当系统状态不满足ETDPC中的触发条件时, 无差拍预测控制模块被挂起, 从而消除非必要运算, 以减轻实现能量管理的运算负担. 因此, 对于电池−超级电容器混合储能系统(Hybrid energy storage system, HESS), ETDPC能够缓解间歇性光伏发电与负荷需求之间的功率失衡, 以稳定母线电压. 最后, 数字仿真和硬件在环(Hardware-in-loop, HIL)实验结果表明, 相较于传统无差拍控制方法, 运算负担减小了50.63%, 母线电压纹波小于0.73%, 验证了ETDPC方法的有效性与性能优势, 为直流微电网的能量管理提供了一种参考.  相似文献   

7.
基于事件触发机制的网络控制研究综述   总被引:1,自引:0,他引:1  
杨飞生  汪璟  潘泉 《控制与决策》2018,33(6):969-977
全面综述基于事件的控制系统的研究现状与最新成果.主要介绍事件驱动通信机制的各种类型和事件触发控制的主要研究内容,包括不同的建模方法以及控制器与事件产生器的联合设计方案,重点对时延系统建模方法进行分析,将事件触发闭环控制系统建模成连续时滞模型.此外,关于网络诱导因素对事件触发机制的影响以及网络化事件触发控制的一些应用也进行说明.最后,提出目前研究工作所存在的不足,以及下一步需要解决的开放难题.  相似文献   

8.
本文研究了无向通信拓扑下二阶多智能体系统的一致性问题, 分别针对有领导者和无领导者的情形, 设计了一类基于辅助动态变量的完全分布式事件触发控制策略, 该策略具有参数较少且易调等特点. 智能体自身的触发函数满足条件时才向邻居广播自身的状态信息, 有效避免了连续通信, 减少了系统能量耗散. 每个智能体的控制协议和触发函数都只用到自身的状态和邻居触发时刻的状态, 不涉及邻居的实时状态信息, 也不依赖通信拓扑网络的任何全局信息. 利用代数图论以及Lyapunov稳定性理论, 证明在所提出的控制策略下, 二阶多智能体系统能够实现渐近一致性, 且不存在Zeno行为. 仿真示例进一步验证了理论结果的有效性.  相似文献   

9.
田宇  何德峰  穆建彬 《控制与决策》2024,39(11):3690-3698
针对160MW锅炉-汽轮机系统的多目标控制问题和计算负担,提出一种事件触发多目标经济模型预测控制(multi-objective economic model predictive control,MO-EMPC)策略.结合字典序方法和生产过程的需求,将锅炉-汽轮机补给燃料的调节控制作为最高优先级控制目标,主蒸汽调控作为第2层优先级控制目标,给水阀调控作为第3层优先级控制目标,构建分层滚动时域优化控制问题.引入锅炉-汽轮机经济最优平衡点定义辅助正定函数的最优值函数,并利用该最优值函数设计收缩约束条件,通过松弛收缩约束条件设计触发机制,建立具有稳定性和经济性能最优的轻量化多目标预测控制方案.对比时间触发下的字典序MO-EMPC算法,所提方法不仅通过降低求解频次减少了计算量,同时保证了锅炉-汽轮机系统的经济性能.  相似文献   

10.
本文研究了前提不匹配的区间2型(IT2)模糊系统的事件触发预测控制问题. 首先, 提出了一个IT2模糊系统模型, 包括动态事件触发机制(ETM)和预测控制器, ETM可以通过减少传输的数据包数量来节省有限的网络资源,预测控制器可以预测两个成功传输时刻之间的系统状态来处理不可靠的通信网络. 其次, 根据李雅普诺夫稳定性理论和前提不匹配方法, 得到了系统稳定的充分条件. 然后, 根据线性矩阵不等式(LMI)得到控制器增益. 最后通过数值模拟验证了方法的有效性.  相似文献   

11.
本文针对一类由状态相互耦合的子系统组成的分布式系统, 提出了一种可以处理输入约束的保证稳定性的非迭代协调分布式预测控制方法(distributed model predictive control, DMPC). 该方法中, 每个控制器在求解控制率时只与其它控制器通信一次来满足系统对通信负荷限制; 同时, 通过优化全局性能指标来提高优化性能. 另外, 该方法在优化问题中加入了一致性约束来限制关联子系统的估计状态与当前时刻更新的状态之间的偏差, 进而保证各子系统优化问题初始可行时, 后续时刻相继可行. 在此基础上, 通过加入终端约束来保证闭环系统渐进稳定. 该方法能够在使用较少的通信和计算负荷情况下, 提高系统优化性能. 即使对于强耦合系统同样能够保证优化问题的递推可行性和闭环系统的渐进稳定性. 仿真结果验证了本文所提出方法的有效性.  相似文献   

12.
    
In this paper, an observer-based event-triggered distributed model predictive control method is proposed for a class of nonlinear interconnected systems with bounded disturbances, considering unmeasurable states. First of all, the state observer is constructed. It is proved that the observation error is bounded. Second, distributed model predictive controller is designed by using observed value. Meanwhile, the event-triggered mechanism is set by using the error between the actual output and the predicted output. The setting of event-triggered mechanism not only ensures the error between the actual output and the predicted output within a certain range, but also reduces the calculation amounts of solving the optimization problem. The states of each subsystem enter the terminal invariant set by distributed model predictive control, and then are stabilized in the invariant set under the action of output feedback control law. In addition, sufficient conditions are given to ensure the feasibility of the algorithm and the stability of the closed-loop system. Finally, the numerical example is given, and the simulation results verify the effectiveness of the proposed algorithm.  相似文献   

13.
This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.  相似文献   

14.
    
ABSTRACT

Constrained finite-horizon linear-quadratic optimal control problems are studied within the context of discrete-time dynamics that arise from the series interconnection of subsystems. A structured algorithm is devised for computing the Newton-like steps of primal-dual interior-point methods for solving a particular re-formulation of the problem as a quadratic program. This algorithm has the following properties: (i) the computation cost scales linearly in the number of subsystems along the cascade; and (ii) the computations can be distributed across a linear processor network, with localised problem data dependencies between the processor nodes and low communication overhead. The computation cost of the approach, which is based on a fixed permutation of the primal and dual variables, scales cubically in the time horizon of the original optimal control problem. Limitations in these terms are explored as part of a numerical example. This example involves application of the main results to model data for the cascade dynamics of an automated irrigation channel in particular.  相似文献   

15.
网络信息模式下分布式系统协调预测控制   总被引:6,自引:3,他引:3       下载免费PDF全文
郑毅  李少远 《自动化学报》2013,39(11):1778-1786
工业系统中广泛存在一类由多个相互关联的子系统组成的大系统. 尽管分布式控制结构的性能没有集中式控制好,但由于其具有较高的灵活性和容错性,相对于集中控制更加适合控制上述系统.在保持容错性的情况下如何提高系统的整体性能是分布式控制的一个难点问题.本文提出了一种分布式预测控制(Distributed model predictive control, DMPC)方法,该方法通过在各子系统预测控制器的性能指标中加入输入变量对其下游子系统的影响的二次函数,来扩大分布式预测控制的协调度,进而在不增加网络连通度,不改变系统容错性的前提下,提高系统的性能.另外,本文给出了基于该协调策略的带输入约束的分布式预测控制器的设计方法,在初始可行的前提下,该方法相继可行并可保证系统渐近稳定.  相似文献   

16.
    
This paper considers a class of cyber‐physical networked systems, which are composed of many interacted subsystems, and are controlled in a distributed framework. The operating point of each subsystem changes with the varying of working conditions or productions, which may cause the change of the interactions among subsystems correspondingly. How to adapt to this change with good closed‐loop optimization performance and appropriate information connections is a problem. To solve this problem, the impaction of a subsystem's control action on the performance of related closed‐loop subsystems is first deduced for measuring the coupling among subsystems. Then, a distributed model predictive control (MPC) for tracking, whose subsystems online reconfigure their information structures, is proposed based on this impaction index. When the operating points changed, each local MPC calculates the impaction indices related to its structural downstream subsystems. If and only if the impaction index exceeds a defined bound, its behavior is considered by its downstream subsystem's MPC. The aim is to improve the optimization performance of entire closed‐loop systems and avoid the unnecessary information connections among local MPCs. Besides, contraction constraints are designed to guarantee that the overall system converges to the set points. The stability analysis is also provided. Simulation results show that the proposed impaction index is reasonable along with the efficiency of the proposed distributed MPC.  相似文献   

17.
    
In this article, we propose a dual-mode event-triggered predictive control method for nonlinear systems with bounded disturbances. The proposed method contains two triggering mechanisms, namely, the hybrid threshold-based event-triggered model predictive control (HETMPC) mechanism and the event-triggered linear quadratic regulator mechanism. The former triggering mechanism is designed based on the error between the real state and the optimal state and also the disturbance information acted on the investigated system. Compared with the traditional fixed triggering threshold, the designed HETMPC has a fewer triggering numbers and reduces the computational burden of online real-time optimization. This event-triggered mechanism will be adopted before the states go into the terminal invariant set. The latter event-triggered mechanism is designed based on the derivation of the system state and it will be adopted after the states enter the terminal invariant set. The feasibility and the input-to-state practical stability analysis of the designed strategy is presented. Some simulations, including the application to a mass-spring-damper system, are provided to show the correctness and feasibility of the designed algorithms.  相似文献   

18.
    
This article proposes a novel event-triggered economic model predictive control (EMPC) scheme with shrinking prediction horizon of nonlinear systems subject to the constraints on the state and control. Some auxiliary positive-definite functions at economic optimal equilibrium points are defined for economic performance functions. The optimal value function of the auxiliary function is used to design an adjustable stability constraint, which is imposed on the original EMPC optimization problem. The stability constraint is relaxed to design the triggered scheme avoiding Zeno behavior, while the prediction horizon is shrinked in different degrees by judging whether the last state within the triggered interval is in the terminal region. The involved parameter can be used to achieve a sensible compromise between system performance and computational complexity. The sufficient conditions guaranteeing the recursive feasibility and stability of the EMPC are derived. Finally, the effectiveness of the algorithm is illustrated by a continuously stirred tank reactor example.  相似文献   

19.
    
Model predictive control (MPC) is one of the few advanced control methodologies that have proven to be very successful in real-life applications. An attractive feature of MPC is its capability of explicitly taking state and input constraints into account. Recently, there has been an increasing interest in the usage of MPC schemes to control electrical power networks. The major obstacle for implementation lies in the large scale of these systems, which is prohibitive for a centralised approach. In this article, we therefore assess and compare the suitability of several non-centralised predictive control schemes for power balancing, to provide valuable insights that can contribute to the successful implementation of non-centralised MPC in the real-life electrical power system.  相似文献   

20.
    
This paper is concerned with a distributed model predictive control (DMPC) method that is based on a distributed optimisation method with two-level architecture for communication. Feasibility (constraints satisfaction by the approximated solution), convergence and optimality of this distributed optimisation method are mathematically proved. For an automated irrigation channel, the satisfactory performance of the proposed DMPC method in attenuation of the undesired upstream transient error propagation and amplification phenomenon is illustrated and compared with the performance of another DMPC method that exploits a single-level architecture for communication. It is illustrated that the DMPC that exploits a two-level architecture for communication has a better performance by better managing communication overhead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号