首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this present study, the isothermal forging of two different gears is carried out from material previously deformed by the severe plastic deformation (SPD) process known as Equal Channel Angular Pressing (ECAP). At present, there are only a few studies which use this material predeformed that exhibits improved mechanical properties as a result of the SPD process for use in subsequent processes or applications. The design and optimization of the die geometry required for the isothermal forging of gears are shown and both microhardness and microstructure are compared when these forged gears are obtained from annealed material (N0) and ECAP-processed material (N2). With this present research work, it is demonstrated that there is an improvement in forgeability and microhardness as well as a decrease in the grain size of the material predeformed by SPD.  相似文献   

2.
Ultrafine-grained pure magnesium with an average grain size of 0.8 μm was produced by refining coarse-grained (980 μm) ingot by multi-pass equal channel angular pressing (ECAP) at room temperature with the application of a back pressure. The compressive deformation behaviour at room temperature depended on grain size, with deformation twinning and associated work hardening observed in coarse-grained Mg, but absent in the ultrafine grained material as decreasing grain size raised the stress for twinning above that for dislocation slip. The ultrafine grained Mg showed good plasticity with prolonged constant stress after some initial strain hardening.  相似文献   

3.
Much effort has been devoted to the study of the formation of superplastic in aluminum alloys on account of its cost and engineering advantages. From a mechanical point of view, the ability of a crystalline material to undergo superplastic behavior is usually linked to a submicrometer grain size. Equal channel angular extrusion (ECAE) is an innovative technique for developing ultrafine-grained microstructures by introducing a severe plastic deformation in a bulk material with no significant changes in its cross-section. Equally, equal channel angular drawing (ECAD) is an emerging technology that permits more industrial applications than the former. However, the deformations thus obtained are much lower. This work presents a study of the application of the finite elements method to this technique using two common angles of 90 and 120°. Process conditions have been modified in order to analyze the effect of friction between the dies and the billet. Moreover, experimental ECAE and ECAD methods have been carried out using 3103 Al-Mn; 5083 Al-Mg and 1370 aluminum alloys through Routes A and B.  相似文献   

4.
Strain hardening of pure copper and friction between the sample and die channels is considered for finite element modelling. To validate the FEM results, the FEM calculated effective strain variations were compared with the hardness measurements. Simulated load–stroke curve and peak load calculations were also compared with the experimentally recorded load–stroke curve and peak load. Different stages of the load–stroke curve of the ECAP process was explained in detail. In over all, good conformity is observed between the FEM calculations and experimental results.  相似文献   

5.
Ultrafine-grained (UFG) Cu and Cu-Zn alloy were prepared using equal-channel angular pressing (ECAP) to investigate the effects of stacking fault energy (SFE) on microstructure evolution and mechanical properties. Combining with the previous researches, the grain refinement process of ECAP is divided into three stages based on the variation of tensile strength and plasticity. According to the influences of defects on strength and ductility during plastic deformation, the three stages are discussed in detail by considering the dislocation density, grain and twin boundaries. Besides, the impact of SFE on the strength and ductility of the UFG Cu-Zn alloys are evaluated, indicating that these two mechanical properties can be improved simultaneously in the whole ECAP process either through slightly or widely adjusting the SFE. This significant effect of SFE reflects in two aspects, one is in the microstructure evolution during ECAP processing and the other is in the subsequent tensile plastic deformation, both of which can be achieved through regulating the dislocation motion via changing the SFE.  相似文献   

6.
In order to examine the combined effect of plastic deformation and aging process, the Al 7075 alloy was subjected to equal channel angular pressing (ECAP) deformation by route BC in various ECAP and aging conditions: pre-ECAP aging, post-ECAP aging and dynamic aging during ECAP at 393 K and 423 K. Followed by ECAP and aging treatment, Vickers microhardness and tensile test were performed and microstructural observations were undertaken using transmission electron microscopy (TEM) and X-ray diffractometer (XRD). TEM investigation showed that ultrafine-grained (UFG) materials with grain size less than 500 nm could be obtained after three or four passes of ECAP. Precipitates characterization revealed that maximum mechanical properties are achieved when the microstructure mainly consists of fine dispersion of small η precipitates and minor quantities of GP zones. Dynamic aged specimens at 393 K and 423 K represented maximum and minimum mechanical properties, respectively, due to formation of fine η precipitates plus GP zones and η plus η precipitates, respectively. Dynamic aging during ECAP at 393 K appeared preferable to other procedures for attaining maximum mechanical properties as well as saving time and energy.  相似文献   

7.
M.Y. Zheng  S.W. Xu  K. Wu  Y. Kojima 《Materials Letters》2007,61(22):4406-4408
Equal channel angular pressing (ECAP) has been conducted on as-cast Mg-4.3 wt.%Zn-0.7 wt.%Y Mg alloy containing quasicrystal phase at a temperature of 623 K. After 8 ECAP passes, the grain size of the as-cast alloy is decreased from ∼ 120 to ∼ 3.5 μm, and the coarse eutectic quasicrystal phases are broken and dispersed in the alloy. Tensile testing has been performed on the ECAPed Mg-Zn-Y alloy at temperatures of 523 K and 623 K with initial strain rates from 1.5 × 10− 3 to 1.5 × 10− 4 s− 1. The ECAPed alloy exhibits a maximum elongation of about 600% when testing at 623 K using an initial strain rate of 1.5 × 10− 4 s− 1. Grain boundary sliding is considered to be the dominant deformation mechanism of the Mg-Zn-Y alloy in the temperature and strain-rate range investigated.  相似文献   

8.
采用自制的90°模具,经Bc路径在温度为300℃下研究对比了铸态及不同道次的等通道挤压(ECAP)态AZ81镁合金微观组织和力学性能.结果表明ECAP随着挤压道次的增加,AZ81镁合金显微组织和力学性能发生显著变化.当挤压到4道次,平均晶粒尺寸由原来铸态的145um细化为9.6um,拉伸断口韧窝明显增多;抗拉强度从180 MPa提高到306 MPa,延伸率和硬度分别达到15.8%和142HL.分析表明,AZ81镁合金在高温挤压过程中Mg17Al12相粒子被破碎,并部分溶入基体,$-Mg基体与%-Mg17Al12相互相阻碍其晶粒长大,获得细小晶粒组织.  相似文献   

9.
During the last decade or so there has been a tremendous growth in the research and development of equal channel angular pressing (ECAP) process which was originally proposed by Segal et al. Numerical analyses are being used extensively to evaluate the effect of various die design and process parameters in ECAP. Friction is one such important parameter. Coulomb and shear friction models have been used in the numerical analysis of ECAP process and contradicting results have been reported. This study evaluates the effect of coulomb and shear friction models on the deformation pattern, strain distribution and load requirement during ECAP process and suggests which friction model should be used in the numerical analysis of ECAP process.  相似文献   

10.
Equal channel angular pressing (ECAP) is a metal processing technique that is used to produce materials with ultrafine (<1 μm) grain sizes. In this work, the effect of the initial microstructure on ECAP of commercially pure titanium (CP Ti), a material used in many industrial applications, was investigated. To produce different initial microstructures, samples of CP Ti were exposed to different annealing conditions: no annealing (Material 1), annealed at 1033 K for 2 hr (Material 2), or annealed at 1173 K for 4 hr (Material 3). Each material was subjected to one pass of ECAP and the resulting microstructures were analyzed using XRD, SEM, and TEM, and compared to the microstructures before ECAP. It was found that each material developed a unique microstructure after one pass of ECAP, which was attributed to the varying microstructural characteristics before ECAP. Microhardness values before and after ECAP varied with each microstructure.  相似文献   

11.
The microstructural evolution and room temperature tensile properties of Mg–8%Li–1%Al alloy processed by equal channel angular pressing (ECAP) at 403 K were investigated. It was found that the strength could be improved pass by pass. The elongation-to-failure decreased dramatically after the first ECAP pass, but could be improved pass by pass during the subsequent ECAP procedure. The microstructure analysis gave the explanations for these phenomena.  相似文献   

12.
Finite element calculations for strain development and deformation homogeneities under equal channel angular pressing (ECAP) considering the channel angle, friction and the channel thickness show that general phenomena characteristic of ECAP still hold when the channel angle is acute ( = 75°), in contrast to the conclusion of the recent paper on acute channel angles [A.V. Nagasekhar, Y. Tick-Hon, S. Li, H.P. Seow, Mater. Sci. Eng. A410–A411 (2005) 269–272] that formation of corner gap was not a factor for the acute channel angles.  相似文献   

13.
等径角挤压对Al-Cu-Mg-Ag合金组织性能的影响   总被引:2,自引:1,他引:1  
为研究大塑形变形对耐热铝合金的作用,采用铸冶金工艺制备了新型的Al-Cu-Mg-Ag耐热铝合金,通过显微组织观察、差热分析及硬度测试等方法,研究了等径角挤压对耐热铝合金显微组织与力学性能的影响.结果表明:通过对挤压态的Al-Cu-Mg-Ag耐热铝合金在固溶淬火后时效前进行等径角挤压变形,可获得晶粒尺寸低于2μm的块体超...  相似文献   

14.
Annealing twins are synthesised in high purity aluminium processed by dynamic equal channel angular pressing during annealing. Annealing twins and recrystallised grains encircling the twins have specific crystallographic orientation relationships with the deformed matrix grains: approximately 35°–50°<110> for the twins and 30°–45°<100> for the recrystallised grains. Stored energy during dynamic pressing, and the crystallographic orientation between annealing twins and the deformed matrix, strongly affect twin growth during annealing.  相似文献   

15.
The inner corner angle (ICA) is one of the major factors affecting deformation homogeneity in workpieces during equal channel angular pressing (ECAP). In this study, the effect of the ICA on the plastic deformation behavior in ECAP was investigated using the finite element method. A round ICA induces highly inhomogeneous deformation in the head, tail, top and bottom regions of the workpiece due to increasing compressive and decreasing shear deformation components. It was found that a round inner corner with an angle up to 9° is acceptable in finite element simulations for reproducing a sharp inner corner. These results can serve as a design guide for processing and dies of ECAP.  相似文献   

16.
To elucidate the effect of the number of passes in equal channel angular pressing on the fatigue strength of ultrafine grained copper, fatigue tests of cylindrical specimens were conducted and the formation behavior of surface damage during cyclic stressing was studied. With the exception of extremely high- and low-stress amplitudes, the fatigue life depended on the number of processing passes and decreased according to the following sequence of pass-numbers: 8-4-12. The difference in fatigue life resulted from the crack initiation life. The physical background of different crack initiation lives among samples is discussed from the viewpoint of slip band formation and the growth of dynamically recrystallized grains.  相似文献   

17.
Abstract

Magnesium is a biocompatible and biodegradable metal, which has attracted much interest in biomedical engineering. Pure magnesium shows the low strength and plasticity at ambient temperature. Microstructure, mechanical properties and degradation properties of the equal channel angular pressed pure magnesium have been investigated for biomedical application in detail by optical microscopes, mechanical properties testing and corrosion testing. The results have revealed that the processing temperature and routes are important factors that affect the properties of pure Mg by equal channel angular pressing. The two-step equal channel angular pressing processing (one pass at 360°C and three passes at 200°C) has been successfully applied to control the microstructure, mechanical and degradation properties of the pure Mg. Optical microscopy observation has indicated that the grain size of the as cast pure magnesium has been significantly decreased after equal channel angular extrusion, which has mainly contributed to the high tensile strength and good elongation. Equal channel angular pressed pure magnesium has provided moderate corrosion resistance, which has opened a new window for materials design, especially for biomedical.  相似文献   

18.
Finite element analysis of rotary-die equal channel angular pressing   总被引:3,自引:0,他引:3  
In this paper, the finite element method (FEM) was applied to analyze the plastic flow and strain hardening behavior of pure copper, subjected to rotary-die equal channel angular pressing (RD-ECAP) up to four passes. The die was rotated 90° counter clockwise between the passes in the simulation. The effective strain distribution and load–stroke curves were investigated. The load was increased with the number of rotary-die equal channel angular pressing passes. The results show that, plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in conventional equal channel angular pressing (ECAP). Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.  相似文献   

19.
采用连续等通道转角挤压工艺,以连续的方式对Al-Ti-C合金进行多道次挤压,通过观察微观组织演化,探讨晶粒细化机理和力学性能变化。结果表明:连续等通道转角挤压工艺可有效细化Al-Ti-C合金微观组织,晶粒尺寸减小至1μm左右,形变诱导是变形过程中最主要的晶粒细化机制;高密度位错堆积引起Al基体和TiAl_(3)界面的裂纹以及TiAl_(3)内部的空洞产生,裂纹进一步扩展贯穿整个TiAl_(3)颗粒,最终导致第二相TiAl_(3)组织的细化,同时细小的第二相TiAl_(3)组织的钉扎机制和剪切机制促进了Al基体细化;连续等通道转角挤压1道次后,合金硬度提升最明显,与原始态相比提高59.2%;之后随挤压道次的增加,硬度提升的趋势变缓,合金塑性下降,韧性提高。  相似文献   

20.
The microstructural evolution and mechanical properties of ultrafine-grained(UFG)CP-Ti after an inno-vative large-volume equal channel angular pressing(L-ECAP)and multi-directional forging(MDF)were systematically examined using monotonic tensile tests combined with transmission electron microscope(TEM)and electron backscatter diffraction(EBSD)techniques.Substantially refined and homogeneous microstructures were achieved after L-ECAP(8-pass and 12-pass)and MDF(2-cycle and 3-cycle),respec-tively,where the grain size distribution conformed to lognormal distribution.The grain refinement of 450℃L-ECAP is dominated by dynamic recrystallization(DRX)and dynamic recovery(DRV),while that of MDF is dominated by DRX.The iron impurities promote recrystallization by pinning-induced dislocation accumulation so that DRX is prone to occur at iron segregation regions during L-ECAP.The monotonic tensile results show that the strain hardening rate of CP-Ti increases with the decrease of grain size,while the continuous strain hardening ability decreases.The relationship between the average grain size and yield strength is in accordance with Hall-Petch relationship.Meanwhile,the individual strength-ening mechanisms were quantitatively examined by the modified model.The results indicate that the strengthening contribution of dislocation accumulation to yield strength is greater than that of grain refinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号