首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于标量加权多传感器线性最小方差最优信息融合准则,对被多传感器观测的带有色观测噪声的离散线性随机控制系统,提出了一种具有两层融合结构的标量加权信息融合稳态Kalman滤波器,它等价于相应的带相关噪声系统的最优信息融合稳态Kalman预报器.最优信息融合稳态预报器可在所有局部预报器达到稳态时,通过一次融合获得,且任两个子系统之间的稳态预报误差互协方差阵可通过任选初值迭代求得,并证明了它的收敛性.通过将它应用到带三个传感器的雷达跟踪系统验证了其有效性.  相似文献   

2.
对于带未知模型参数和噪声方差的多传感器系统,基于分量按标量加权最优融合准则,提出了自校正解耦融合Kalman滤波器,并应用动态误差系统分析(Dynamic error system analysis,DESA)方法证明了它的收敛性.作为在信号处理中的应用,对带有色和白色观测噪声的多传感器多维自回归(Autoregressive,AR)信号,分别提出了AR信号模型参数估计的多维和多重偏差补偿递推最小二乘(Bias compensated recursive least-squares,BCRLS)算法,证明了两种算法的等价性,并且用DESA方法证明了它们的收敛性.在此基础上提出了AR信号的自校正融合Kalman滤波器,它具有渐近最优性.仿真例子说明了其有效性.  相似文献   

3.
对于带来知有色观测噪声和未知常的输入的离散线性系统,本文用现代时间序列分析方法,基于ARMA新息模型,提出了一种新的带输入估计的自校正Kalmn滤波器,作为一个应用例子,提出了新颖的带有色观测噪声和输入估计的自校正α—β跟踪滤波器,仿真结果说明了其有效性。  相似文献   

4.
按对角阵加权自校正信息融合Kalman预报器及其收敛性分析   总被引:8,自引:0,他引:8  
对于带未知噪声统计的多传感器系统,应用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和相关函数矩阵方程的解,得到了噪声方差估值器,且在按对角阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman预报器.它实现了状态分量的自校正解耦融合Kalman预报器.基于动态误差系统,提出了自校正融合器的一种新的收敛性分析方法.提出了按实现收敛新概念,它比以概率1收敛弱.严格证明了:假如MA新息模型参数估计是一致的,则自校正融合Kalman预报器将按实现或按概率1收敛到最优融合Kalman预报器,因而它具有渐近最优性.它可减小计算负担,且便于实时应用. 一个3传感器跟踪系统的仿真例子证明了其有效性.  相似文献   

5.
对于带未知噪声方差的多传感器系统,用相关方法给出了噪声方差的在线估值器,进而基于Riccati方程和按分量标量加权最优融合规则,提出了自校正分量解耦信息融合Kalman滤波器.用动态误差系统分析方法证明了自校正融合Kalman滤波器按实现收敛于最优融合Kalman滤波器,因而具有渐近最优性.一个3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

6.
自校正多传感器观测融合Kalman估值器及其收敛性分析   总被引:1,自引:1,他引:1  
对于带未知噪声方差的多传感器系统,应用加权最小二乘(WLS)法得到了一个加权融合观测方程,且它与状态方程构成一个等价的观测融合系统.应用现代时间序列分析方法,基于观测融合系统的滑动平均(MA)新息模型参数的在线辨识,可在线估计未知噪声方差,进而提出了一种加权观测融合自校正Kalman估值器,可统一处理自校正融合滤波、预报和平滑问题,并用动态误差系统分析方法证明了它的收敛性,即若MA新息模型参数估计是一致的,则它按实现或按概率1收敛到全局最优加权观测融合Kalman估值器,因而具有渐近全局最优性.一个带3传感器跟踪系统的仿真例子说明了其有效性.  相似文献   

7.
对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和求解相关函数矩阵方程组,得到了噪声统计的在线估值器,进而在按矩阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman平滑器,提出了一种按实现收敛性新概念,证明了自校正Kalman融合器按实现收敛于最优Kalman融合器,因而它具有渐近最优性.同单传感器自校正Kalman平滑器相比,它可提高平滑精度,一个目标跟踪系统的仿真例子说明了其有效性.  相似文献   

8.
基于新息分析方法, 对带有色观测噪声的多重时滞系统, 提出了一种带白噪声估值器的非增广的最优滤波器. 它等价于一个带相关白噪声多重时滞系统的一步预报器. 当系统带有多个传感器时, 推导了多重时滞系统的任意两个传感器子系统之间的估计误差互协方差阵. 基于线性最小方差最优加权融合估计算法, 给出了分布式加权融合最优滤波器. 分布式融合估计比基于每个传感器的局部估计具有更高的精度. 比增广的集中式最优滤波器具有更好的可靠性, 且避免了高维计算和大存储空间. 仿真例子验证了其有效性.  相似文献   

9.
对于带相关观测噪声和带不同观测阵的多传感器系统, 用加权最小二乘 (Weighted least squares, WLS) 法提出了两种相关观测融合稳态Kalman滤波算法. 其原理是用加权局部观测方程得到一个融合观测方程, 它伴随状态方程实现观测融合稳态Kalman滤波. 用信息滤波器证明了它们功能等价于集中式融合稳态Kalman滤波算法, 因而具有渐近全局最优性, 且可减少计算负担. 它们可应用于多通道自回归滑动平均 (Autoregressive moving average, ARMA) 信号观测融合滤波和反卷积. 两个数值仿真例子验证了它们的功能等价性.  相似文献   

10.
相关观测融合Kalman估值器及其全局最优性   总被引:1,自引:0,他引:1  
对于带相关观测噪声和带不同观测阵的多传感器线性离散时变随机控制系统, 用加权最小二乘法(WLS)提出了两种加权观测融合Kalman估值器, 它们包括状态滤波、状态预报和状态平滑. 基于信息滤波器形式下的Kalman滤波器, 证明了在相同初值下, 它们在数值上恒等于相应的集中式观测融合Kalman估值器, 因而具有全局最优性. 但是它们可明显减轻计算负担. 数值仿真例子验证了它们在功能上等价于集中式观测融合Kalman估值器.  相似文献   

11.
精确控制激光束使其始终对中并跟踪焊缝是保证激光焊接质量的前提.以大功率光纤激光焊接Type304不锈钢为试验对象,研究一种有色噪声环境下应用卡尔曼滤波最优状态估计预测激光束与焊缝路径偏差的方法.使用高速红外视觉传感器摄取焊接区红外热像,提取焊缝位置参数并构成状态向量,建立基于焊缝位置参数的系统状态方程和焊缝位置测量方程.针对系统动态噪声为有色噪声,通过扩展状态变量的方法建立有色噪声环境下的卡尔曼滤波算法,对焊缝位置进行最优状态估计并得到最小均方差条件下的焊缝偏差最优预测值,消除系统噪声对焊缝偏差测量的影响.焊接试验结果表明新方法可有效抑制有色噪声干扰并提高焊缝跟踪精度.  相似文献   

12.
自校正对角阵加权信息融合Kalman预报器   总被引:6,自引:0,他引:6  
For the multisensor systems with unknown noise statistics, using the modern time series analysis method, based on on-line identification of the moving average (MA) innovation models, and based on the solution of the matrix equations for correlation function, estimators of the noise variances are obtained, and under the linear minimum variance optimal information fusion criterion weighted by diagonal matrices, a self-tuning information fusion Kalman predictor is presented, which realizes the self-tuning decoupled fusion Kalman predictors for the state components. Based on the dynamic error system, a new convergence analysis method is presented for self-tuning fuser. A new concept of convergence in a realization is presented, which is weaker than the convergence with probability one. It is strictly proved that if the parameter estimation of the MA innovation models is consistent, then the self-tuning fusion Kalman predictor will converge to the optimal fusion Kalman predictor in a realization, or with probability one, so that it has asymptotic optimality. It can reduce the computational burden, and is suitable for real time applications. A simulation example for a target tracking system shows its effectiveness.  相似文献   

13.
For multisensor systems with unknown parameters and noise variances, three self-tuning measurement fusion Kalman predictors based on the information matrix equation are presented by substituting the online estimators of unknown parameters and noise variances into the optimal measurement fusion steady-state Kalman predictors. By the dynamic variance error system analysis method, the convergence of the self-tuning information matrix equation is proved. Further, it is proved by the dynamic error system analysis method that the proposed self-tuning measurement fusion Kalman predictors converge to the optimal measurement fusion steady-state Kalman predictors in a realisation, so they have asymptotical global optimality. Compared with the centralised measurement fusion Kalman predictors based on the Riccati equation, they can significantly reduce the computational burden. A simulation example applied to signal processing shows their effectiveness.  相似文献   

14.
快速信息融合Kalman滤波器   总被引:5,自引:0,他引:5  
应用现代时间序列分析方法,在标量加权线性最小方差融合准则下,提出一种多传感器快速信息融合稳态Kalman滤波器.基于ARMA新息模型计算稳态Kalman滤波器增益,提出了计算传感器之间的滤波误差方差阵和协方差阵的Lyapunov方程,它可用迭代法求解,并证明了迭代解的指数收敛性.与基于Riccati方程按矩阵加权的信息融合Kalman滤波器相比,可明显减小计算负担,便于实时应用,可用于设计含未知噪声统计系统的信息融合自校正Kalman滤波器.最后以目标跟踪系统的一个仿真例子说明了其有效性.  相似文献   

15.
为了克服按矩阵加权信息融合非稳态Kalman滤波器的在线计算负担大的缺点,和按标量加权融合Kalman滤波器精度较低的缺点,应用现代时间序列分析方法,提出了按对角阵加权的线性最小方差多传感器信息融合稳态Kalman滤波器.它等价于状态分量按标量加权信息融合Kalman滤波器,实现了解耦信息融合Kalman滤波器.它的精度和计算负担介于按矩阵和按标量加权融合器两者之间,且便于实时应用.为了计算最优加权,提出了计算稳态滤波误差方差阵和协方差阵的Lyapunov方程.一个三传感器的雷达跟踪系统的仿真例子说明了其有效性.  相似文献   

16.
协方差交叉融合鲁棒Kalman滤波器   总被引:1,自引:0,他引:1  
对于带未知互协方差的两传感器系统,提出一种协方差交叉(CI)融合鲁棒稳态Kalman滤波器,它关于未知互协方差具有鲁棒性.严格证明了该滤波器的实际精度高于每个局部滤波器的精度,但低于带已知互协方差的最优融合Kalman滤波器的精度.基于协方差椭圆给出了精度关系的几何解释.进一步将上述结果推广到一般多传感器情形.一个跟踪系统的Monte-Carlo仿真例子表明,其实际精度接近于带已知互协方差的最优融合器的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号