首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
冯沛  段本成 《广西电力》2012,35(6):58-62
通过探讨多种确定性及非确定性负荷预测方法,将当前少有应用的支持向量机算法引入电力系统负荷预测。介绍了统计学理论,引入了根据该理论提出的支持向量机算法。对支持向量机算法原理进行了介绍,分析了该算法的本质及应用价值。采用回归问题的支持向量回归机ε-SVR算法,给出了将该算法应用于中长期负荷预测的方法。通过算例,验证了该方法的有效性。  相似文献   

2.
基于支持向量机的中长期日负荷曲线预测   总被引:4,自引:3,他引:4  
提出了一种预测中长期日负荷曲线的新方法,通过历史典型日负荷数据构造出典型日年度发展时间序列,运用支持向量机方法对预测日各时刻负荷值进行预测并得到了典型日负荷曲线。该方法不需要对日负荷特性、最大负荷及需电量进行预测,因此避免了可能的误差积累问题。以某电网为例对该方法进行了测试,结果表明其具有较高的预测精度。  相似文献   

3.
短期负荷预测的支持向量机方法研究   总被引:110,自引:30,他引:110  
提出了一种基于支持向量机(SVM)理论的电力系统短期负荷预测方法。该方法采用结构风险最小化原则(SRM),与采用经验风险最小化原则(ERM)的传统神经网络方法相比,具有更好的泛化性能和精度,减少了对经验的依赖。SVM算法以统计学习理论作为其理论基础,它的训练等价于解决一个二次规划问题。为了提高负荷预测精度,文中在训练数据集中采用了负荷数据和温度数据。通过和多层BP神经网络进行比较的试验,结果证明了其在短期负荷预测中的有效性。  相似文献   

4.
基于支持向量机的中长期电力负荷组合预测   总被引:5,自引:0,他引:5  
影响中长期负荷的因素多,随机性强,单一预测方法很难满足不同情况的预测需要,组合预测能较好地解决单一模型的不足,但现有组合预测模型主要基于经验风险最小,预测精度受组合模型的限制.本文提出一种基于最小二乘支持向量机的中长期负荷组合预测模型,该模型利用结构风险最小化原则代替传统的经验风险最小化,充分挖掘原始数据和单一预测模型的信息,以单一模型的预测数据作为组合预测样本,选择多项式核函数的最小二乘支持向量机进行组合预测.实际算例表明,本文提出的组合模型预测平均误差仅为1.719%,具有良好的可行性和有效性.  相似文献   

5.
基于粗糙集理论和最小二乘支持向量机的中长期负荷预测   总被引:1,自引:0,他引:1  
刘耀年  庞松岭  李鉴 《中国电力》2007,40(10):42-44
根据电力系统中长期负荷预测的特点,提出了粗糙集理论与最小二乘支持向量机相结合的预测方法。应用粗糙集理论对影响负荷的众多因素进行约简,得到与负荷关系最为密切的核心因素,将其作为最小二乘支持向量机的输入矢量进行预测。实际算例分析表明,该预测模型符合中长期负荷预测的特点并具有较高的精度,方法是可行和有效的。  相似文献   

6.
基于免疫支持向量机方法的电力系统短期负荷预测   总被引:11,自引:3,他引:11  
吴宏晓  侯志俭 《电网技术》2004,28(23):47-51
在对支持向量机(Support Vector Machines,SVM)方法的参数性能进行分析的基础上,提出了一种免疫支持向量机方法来预测电力系统短期负荷,其中利用免疫算法来优化支持向量机方法的参数.免疫算法是根据人类或其它高等动物免疫系统的机理而设计的,通过仿真抗原和抗体之间的相互作用过程,有效地克服了未成熟收敛现象,提高了群体的多样性.电力系统短期负荷预测的实际算例表明,与支持向量机方法相比,本文所提免疫支持向量机方法具有更高的预测精度.  相似文献   

7.
支持向量机方法已经非常成熟的应用在短期负荷预测领域,它在选取历史日期进行模型训练的时候通常选取距离预测日相近的一段日期,而没有考虑这段时间气象条件、星期类型、节假日造成的影响,使得所建立的模型并不能完全的反映预测日的特征。提出了基于一种基于数据挖掘技术的支持向量机负荷预测方法,该方法提出了预测模型样本选取的新颖思路,首先采用层次聚类法对历史日负荷进行聚类,利用层次聚类得到的分类结果建立决策树,根据待预测日的属性在决策树中查询得到支持向量机预测模型输入的历史负荷,建立支持向量机预测模型并对待预测日的负荷进行预测。实例中负荷数据采用浙江省某地级市的历史负荷,用新方法对该地区的日96点负荷进行预测,并将该算法与传统的支持向量机算法进行比较,文中提出的方法解决了传统的基于支持向量机方法训练日期选取不能反映待预测日特征的问题,故本算法结果具有较高预测精度。  相似文献   

8.
运用多种预测方法对中长期电力负荷预测所得结果会相差甚远,而综合各方法的组合预测能够避免其偏颇。由于在小样本和非线性拟合能力方面的优势,支持向量机方法被用于组合预测:多种传统方法预测值作为输入,拟合输入与输出之间的非线性关系,求得预测结果。针对SVM在处理回归问题时算法编程及参数寻优较为复杂的问题,提出了一种基于SVM图形用户界面(Graphical User Interface,GUI)工具箱的组合预测方法。算例分析表明,运用该方法,在预测过程中可直观、方便地应用通用软件工具包,且预测精度较高,便于推广和工程应用。  相似文献   

9.
提出了一种人工免疫加权支持向量机负荷预测模型,针对各训练样本重要性的差异,提出了给各个样本的参数赋予不同权重的加权支持向量机方法,并用人工免疫算法对支持向量机的核函数和参数进行寻优,从而很好的解决支持向量机应用中核函数和参数选择这一公认的难题,减少了人工凭经验选择的盲目性.经过仿真,证明了其在短期负荷预测中的有效性.  相似文献   

10.
基于人工免疫加权支持向量机的电力负荷预测   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种人工免疫加权支持向量机负荷预测模型,针对各训练样本重要性的差异,提出了给各个样本的参数赋予不同权重的加权支持向量机方法,并用人工免疫算法对支持向量机的核函数和参数进行寻优,从而很好的解决支持向量机应用中核函数和参数选择这一公认的难题,减少了人工凭经验选择的盲目性。经过仿真,证明了其在短期负荷预测中的有效性。  相似文献   

11.
基于多分辨率SVM回归估计的短期负荷预测   总被引:1,自引:3,他引:1  
针对短期负荷预测支持向量机(SVM)方法的局部逼近能力和泛化能力进行研究,将多分辨率支持向量机(M—SVM)用于短期负荷预测中节点负荷预测曲线的回归估计。该理论在保持曲线总体逼近能力的同时提高了局部区域的逼近能力。文中根据短期负荷预测的具体特点,设计了负荷预测数学模型,采用96条回归曲线进行日负荷的曲线预测,并在该模型的基础上采用实际数据进行验证,分析了这种回归模型的泛化能力。实验结果表明M-SVM模型在预测精度和预测速度方面具有优良的特性。  相似文献   

12.
基于灰色理论的中长期负荷预测   总被引:3,自引:0,他引:3  
对负荷预测中的灰色预测方法进行了深入的研究,找出了灰色建模的局限性并提出了改进方法.通过对负荷原始数据序列的预处理及优化,增强了灰色预测对波动负荷数据序列的处理能力,利用等维新息递推GM(1,1)模型进行预测,保证了预测能够较为充分地利用新信息.经过改进之后的模型,扩展了普通GM(1,1)模型的适应范围,提高了预测精度.利用实例将改进模型与普通GM(1,1)模型进行比较,证明改进模型具有比普通GM(1,1)模型误差小、精度高的优点.  相似文献   

13.
基于粗糙集理论和多元线性回归模型,提出一种预测电力系统中长期负荷的新方法。首先采用一种完备的属性约简算法对影响电力负荷的诸多相关因素进行约简,得到与负荷关系最为密切的核心因素。在此基础上,建立多元线性回归模型来预测未来年的负荷。对一个实际电网的负荷进行预测,结果表明所提方法符合中长期负荷预测的特点并具有较高的预测精度。  相似文献   

14.
基于粗糙集理论的灰色理论中长期负荷预测法   总被引:1,自引:0,他引:1  
张红  史春城  赵亮 《吉林电力》2011,39(6):18-20
针对城市配电网负荷受各种不确定因素的影响很大问题,应用粗糙集理论研究了历史数据不确定性影响下的配电网中长期负荷预测,利用粗糙集理论与灰色理论相结合,提出了适合配电网总量负荷预测的方法,通过实际算例验证了此种方法的有效性.  相似文献   

15.
基于短期相关性和负荷增长的中长期负荷预测   总被引:2,自引:2,他引:2  
现有中长期负荷预测非线性模型存在预测困难及精度偏低且不稳定的问题。文中提出了一种基于短期相关性和年度负荷增长的预测方法,将非线性问题转化为线性问题来解决。该方法首先根据上一年相邻点和相邻周负荷之间的短期相关性构建线性回归模型;然后采用递归的方法计算出下一年各周所有负荷点的预测值;最后考虑年度负荷增长,对预测值进行修正得到最终预测结果。结合实际电网数据验证了该方法的有效性和实用性,为中长期负荷预测提供了一条可行的新思路。  相似文献   

16.
在时间序列预测法的基础上,将数据处理组合方法GMDH应用于中长期电力负荷预测。介绍了GMDH的基本原理,根据历史数据建立GMDH模型,通过某地区电力负荷预测实例,对电力负荷值进行了计算分析,结果表明该方法可获得较高的预测精度。  相似文献   

17.
为了提高中长期负荷预测的精度,避免单一的灰色模型预测和指数平滑法预测精度偏低的缺点,提出了基于黄金分割法优选的自适应变权组合预测方法。该方法首先对灰色预测方法和自适应三次指数平滑法进行了改进,以拟合值与实际值之间的相对误差绝对值之和最小为目标,利用黄金分割法优选出自适应三次指数平滑法的平滑系数,确定最优的三次指数平滑模型,然后以同样的方法确定灰色模型和自适应三次指数平滑法的权重。接着,对原始负荷数据进行新陈代谢,重复利用黄金分割法优选出新的平滑系数和各单一方法的权重,即可得到新的变权组合预测模型。仿真结果表明,所提出的自适应变权组合预测方法切实可行,与单一的灰色模型、三次指数平滑法及等权组合预测方法相比,有效地提高了中长期负荷预测的精度。  相似文献   

18.
对于存在多个影响因素的中长期电力负荷,采用常规灰色模型GM(1,1)进行中长期预测不能获得较好的预测精度。提取了中长期负荷主要影响因素之一的生产总值和年总用电量建立了多变量灰色预测模型MGM(1,2)。为进行比较分析,同时还建立了常规灰色GM(1,1)模型。预测结果显示,多变量灰色模型MGM(1,2)的预测精度优于常规灰色模型GM(1,1)。  相似文献   

19.
提出了一种联合使用硬C均值(hard C-mean,HCM) 聚类算法和支持向量机(support vector machine,SVM)的电力系统短期负荷预测方法。与目前采用单一SVM的负荷预测方法相比,考虑了电力负荷变化的周期性特征,依据输入样本的相似度选取训练样本,即通过对学习样本的聚类选用同类特征数据作为预测输入,保证了数据特征的一致性,强化了历史数据规律。实际应用证明了该方法的有效性,该方法不仅提高了负荷预测精度,还缩短了预测执行时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号