共查询到20条相似文献,搜索用时 0 毫秒
1.
This letter presents a novel unsupervised competitive learning rule called the boundary adaptation rule (BAR), for scalar quantization. It is shown both mathematically and by simulations that BAR converges to equiprobable quantizations of univariate probability density functions and that, in this way, it outperforms other unsupervised competitive learning rules. 相似文献
2.
We show how the quantum paradigm can be used to speed up unsupervised learning algorithms. More precisely, we explain how it is possible to accelerate learning algorithms by quantizing some of their subroutines. Quantization refers to the process that partially or totally converts a classical algorithm to its quantum counterpart in order to improve performance. In particular, we give quantized versions of clustering via minimum spanning tree, divisive clustering and k-medians that are faster than their classical analogues. We also describe a distributed version of k-medians that allows the participants to save on the global communication cost of the protocol compared to the classical version. Finally, we design quantum algorithms for the construction of a neighbourhood graph, outlier detection as well as smart initialization of the cluster centres. 相似文献
3.
We propose an automatic thresholding technique for difference images in unsupervised change detection. Such a technique takes into account the different costs that may be associated with commission and omission errors in the selection of the decision threshold. This allows the generation of maps in which the overall change-detection cost is minimized, i.e. the more critical kind of error is reduced according to end-user requirements. 相似文献
4.
Multimedia Tools and Applications - Deep learning has not been successfully implemented in the past with accurate segmentation of prostate on Magnetic Resonance (MR) image in nerve sparing prostate... 相似文献
5.
This note propose an alternative to a neural network for designing scaler quantizers proposed by Van Hulle and Martinez (ibid., vol.5, p.498-501, May 1994). It also points out that the performance measure used is of limited applicability. 相似文献
6.
Over the last decade, the deep neural networks are a hot topic in machine learning. It is breakthrough technology in processing images, video, speech, text and audio. Deep neural network permits us to overcome some limitations of a shallow neural network due to its deep architecture. In this paper we investigate the nature of unsupervised learning in restricted Boltzmann machine. We have proved that maximization of the log-likelihood input data distribution of restricted Boltzmann machine is equivalent to minimizing the cross-entropy and to special case of minimizing the mean squared error. Thus the nature of unsupervised learning is invariant to different training criteria. As a result we propose a new technique called “REBA” for the unsupervised training of deep neural networks. In contrast to Hinton’s conventional approach to the learning of restricted Boltzmann machine, which is based on linear nature of training rule, the proposed technique is founded on nonlinear training rule. We have shown that the classical equations for RBM learning are a special case of the proposed technique. As a result the proposed approach is more universal in contrast to the traditional energy-based model. We demonstrate the performance of the REBA technique using wellknown benchmark problem. The main contribution of this paper is a novel view and new understanding of an unsupervised learning in deep neural networks. 相似文献
7.
An unsupervised competitive learning algorithm based on the classical k-means clustering algorithm is proposed. The proposed learning algorithm called the centroid neural network (CNN) estimates centroids of the related cluster groups in training date. This paper also explains algorithmic relationships among the CNN and some of the conventional unsupervised competitive learning algorithms including Kohonen's self-organizing map and Kosko's differential competitive learning algorithm. The CNN algorithm requires neither a predetermined schedule for learning coefficient nor a total number of iterations for clustering. The simulation results on clustering problems and image compression problems show that CNN converges much faster than conventional algorithms with compatible clustering quality while other algorithms may give unstable results depending on the initial values of the learning coefficient and the total number of iterations. 相似文献
8.
Reducing the dimensionality of the data has been a challenging task in data mining and machine learning applications. In these applications, the existence of irrelevant and redundant features negatively affects the efficiency and effectiveness of different learning algorithms. Feature selection is one of the dimension reduction techniques, which has been used to allow a better understanding of data and improve the performance of other learning tasks. Although the selection of relevant features has been extensively studied in supervised learning, feature selection in the absence of class labels is still a challenging task. This paper proposes a novel method for unsupervised feature selection, which efficiently selects features in a greedy manner. The paper first defines an effective criterion for unsupervised feature selection that measures the reconstruction error of the data matrix based on the selected subset of features. The paper then presents a novel algorithm for greedily minimizing the reconstruction error based on the features selected so far. The greedy algorithm is based on an efficient recursive formula for calculating the reconstruction error. Experiments on real data sets demonstrate the effectiveness of the proposed algorithm in comparison with the state-of-the-art methods for unsupervised feature selection. 相似文献
9.
Proposed is an idea of partial supervision realized in the form of a neural-network front end to the schemes of unsupervised learning (clustering). This neural network leads to an anisotropic nature of the induced feature space. The anisotropic property of the space provides us with some of its local deformation necessary to properly represent labeled data and enhance efficiency of the mechanisms of clustering to be exploited afterwards. The training of the network is completed based upon available labeled patterns-a referential form of the labeling gives rise to reinforcement learning. It is shown that the discussed approach is universal and can be utilized in conjunction with any clustering method. Experimental studies are concentrated on three main categories of unsupervised learning including FUZZY ISODATA, Kohonen self-organizing maps, and hierarchical clustering. 相似文献
10.
Formalizing computational models for everyday human activities remains an open challenge. Many previous approaches towards this end assume prior knowledge about the structure of activities, using which explicitly defined models are learned in a completely supervised manner. For a majority of everyday environments however, the structure of the in situ activities is generally not known a priori. In this paper we investigate knowledge representations and manipulation techniques that facilitate learning of human activities in a minimally supervised manner. The key contribution of this work is the idea that global structural information of human activities can be encoded using a subset of their local event subsequences, and that this encoding is sufficient for activity-class discovery and classification.In particular, we investigate modeling activity sequences in terms of their constituent subsequences that we call event n-grams. Exploiting this representation, we propose a computational framework to automatically discover the various activity-classes taking place in an environment. We model these activity-classes as maximally similar activity-cliques in a completely connected graph of activities, and describe how to discover them efficiently. Moreover, we propose methods for finding characterizations of these discovered classes from a holistic as well as a by-parts perspective. Using such characterizations, we present a method to classify a new activity to one of the discovered activity-classes, and to automatically detect whether it is anomalous with respect to the general characteristics of its membership class. Our results show the efficacy of our approach in a variety of everyday environments. 相似文献
11.
This letter presents a new memristor crossbar array system and demonstrates its applications in image learning. The controlled pulse and image overlay technique are introduced for the programming of memristor crossbars and promising a better performance for noise reduction. The time-slot technique is helpful for improving the processing speed of image. Simulink and numerical simulations have been employed to demonstrate the useful applications of the proposed circuit structure in image learning. 相似文献
12.
Clustering aims to partition a data set into homogenous groups which gather similar objects. Object similarity, or more often object dissimilarity, is usually expressed in terms of some distance function. This approach, however, is not viable when dissimilarity is conceptual rather than metric. In this paper, we propose to extract the dissimilarity relation directly from the available data. To this aim, we train a feedforward neural network with some pairs of points with known dissimilarity. Then, we use the dissimilarity measure generated by the network to guide a new unsupervised fuzzy relational clustering algorithm. An artificial data set and a real data set are used to show how the clustering algorithm based on the neural dissimilarity outperforms some widely used (possibly partially supervised) clustering algorithms based on spatial dissimilarity. 相似文献
13.
Recent studies have confirmed that the modulation of synaptic efficacy affects emergent behaviour of brain cells assemblies. We report the first results of adding up the behaviour of particular brain circuits to Artificial Neural Networks. A new hybrid learning method has emerged. In order to find the best solution to a given problem, this method combines the use of Genetic Algorithms with particular changes to connection weights based on this behaviour. We show this combination in feed-forward multilayer architectures initially created to solve classification problems and we illustrate the benefits obtained with this new method. 相似文献
14.
Benchmarking pattern recognition, machine learning and data mining methods commonly relies on real-world data sets. However, there are some disadvantages in using real-world data. On one hand collecting real-world data can become difficult or impossible for various reasons, on the other hand real-world variables are hard to control, even in the problem domain; in the feature domain, where most statistical learning methods operate, exercising control is even more difficult and hence rarely attempted. This is at odds with the scientific experimentation guidelines mandating the use of as directly controllable and as directly observable variables as possible. Because of this, synthetic data possesses certain advantages over real-world data sets. In this paper we propose a method that produces synthetic data with guaranteed global and class-specific statistical properties. This method is based on overlapping class densities placed on the corners of a regular k-simplex. This generator can be used for algorithm testing and fair performance evaluation of statistical learning methods. Because of the strong properties of this generator researchers can reproduce each others experiments by knowing the parameters used, instead of transmitting large data sets. 相似文献
15.
Microsystem Technologies - This research focuses on bot detection through implementation of techniques such as traffic analysis, unsupervised machine learning, and similarity analysis between... 相似文献
16.
Three well-known algorithms for unsupervised learning using a decision-directed approach are the random labeling of patterns according to the estimated a posteriori probabilities, the classification according to the estimated a posteriori probabilities, and the iterative solution of the maximum likelihood equations. The convergence properties of these algorithms are studied by using a sample of about 10 000 handwritten numerals. It turns out that the iterative solution of the maximum likelihood equations has the best properties among the three approaches. However, even this one fails to yield satisfactory results if the number of unknown parameters becomes large, as is usually the case in realistic problems of pattern recognition. 相似文献
17.
A novel neural network called Class Directed Unsupervised Learning (CDUL) is introduced. The architecture, based on a Kohonen self-organising network, uses additional input nodes to feed class knowledge to the network during training, in order to optimise the final positioning of Kohonen nodes in feature space. The structure and training of CDUL networks is detailed, showing that (a) networks cannot suffer from the problem of single Kohonen nodes being trained by vectors of more than one class, (b) the number of Kohonen nodes necessary to represent the classes is found during training, and (c) the number of training set passes CDUL requires is low in comparison to similar networks. CDUL is subsequently applied to the classification of chemical excipients from Near Infrared (NIR) reflectance spectra, and its performance compared with three other unsupervised paradigms. The results thereby obtained demonstrate a superior performance which remains relatively constant through a wide range of network parameters. 相似文献
18.
Dimensionality reduction is an important and challenging task in machine learning and data mining. Feature selection and feature extraction are two commonly used techniques for decreasing dimensionality of the data and increasing efficiency of learning algorithms. Specifically, feature selection realized in the absence of class labels, namely unsupervised feature selection, is challenging and interesting. In this paper, we propose a new unsupervised feature selection criterion developed from the viewpoint of subspace learning, which is treated as a matrix factorization problem. The advantages of this work are four-fold. First, dwelling on the technique of matrix factorization, a unified framework is established for feature selection, feature extraction and clustering. Second, an iterative update algorithm is provided via matrix factorization, which is an efficient technique to deal with high-dimensional data. Third, an effective method for feature selection with numeric data is put forward, instead of drawing support from the discretization process. Fourth, this new criterion provides a sound foundation for embedding kernel tricks into feature selection. With this regard, an algorithm based on kernel methods is also proposed. The algorithms are compared with four state-of-the-art feature selection methods using six publicly available datasets. Experimental results demonstrate that in terms of clustering results, the proposed two algorithms come with better performance than the others for almost all datasets we experimented with here. 相似文献
19.
In this paper we present a novel moment-based skeleton detection for representing human objects in RGB-D videos with animated 3D skeletons. An object often consists of several parts, where each of them can be concisely represented with a skeleton. However, it remains as a challenge to detect the skeletons of individual objects in an image since it requires an effective part detector and a part merging algorithm to group parts into objects. In this paper, we present a novel fully unsupervised learning framework to detect the skeletons of human objects in a RGB-D video. The skeleton modeling algorithm uses a pipeline architecture which consists of a series of cascaded operations, i.e., symmetry patch detection, linear time search of symmetry patch pairs, part and symmetry detection, symmetry graph partitioning, and object segmentation. The properties of geometric moment-based functions for embedding symmetry features into centers of symmetry patches are also investigated in detail. As compared with the state-of-the-art deep learning approaches for skeleton detection, the proposed approach does not require tedious human labeling work on training images to locate the skeleton pixels and their associated scale information. Although our algorithm can detect parts and objects simultaneously, a pre-learned convolution neural network (CNN) can be used to locate the human object from each frame of the input video RGB-D video in order to achieve the goal of constructing real-time applications. This much reduces the complexity to detect the skeleton structure of individual human objects with our proposed method. Using the segmented human object skeleton model, a video surveillance application is constructed to verify the effectiveness of the approach. Experimental results show that the proposed method gives good performance in terms of detection and recognition using publicly available datasets. 相似文献
20.
A large and influential class of neural network architectures uses postintegration lateral inhibition as a mechanism for competition. We argue that these algorithms are computationally deficient in that they fail to generate, or learn, appropriate perceptual representations under certain circumstances. An alternative neural network architecture is presented here in which nodes compete for the right to receive inputs rather than for the right to generate outputs. This form of competition, implemented through preintegration lateral inhibition, does provide appropriate coding properties and can be used to learn such representations efficiently. Furthermore, this architecture is consistent with both neuroanatomical and neurophysiological data. We thus argue that preintegration lateral inhibition has computational advantages over conventional neural network architectures while remaining equally biologically plausible. 相似文献
|