首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Primary tumours of the central nervous system (CNS) are an important cause of cancer-related deaths in adults and children. CNS tumours are mostly glial cell in origin and are predominantly astrocytomas. Conventional therapy of high-grade gliomas includes maximal resection followed by radiation treatment. The addition of adjuvant chemotherapy provides little improvement in survival time and hence assessment of novel therapies is imperative. We have evaluated the potential therapeutic use of the herpes simplex virus (HSV) mutant 1716 in the treatment of primary brain tumours. The mutant is deleted in the RL1 gene and fails to produce the virulence factor ICP34.5. 1716 replication was analysed in both established human glioma cell lines and in primary cell cultures derived from human tumour biopsy material. In the majority of cultures, virus replication occurred and consequential cell death resulted. In the minority of tumour cell lines which are non-permissive for mutant replication, premature shut-off of host cell protein synthesis was induced in response to lack of expression of ICP34.5. Hence RL1-negative mutants have the distinct advantage of providing a double hit phenomenon whereby cell death could occur by either pathway. Moreover, 1716, by virtue of its ability to replicate selectively within a tumour cell, has the potential to deliver a 'suicide' gene product to the required site immediately. It is our opinion that HSV which fails to express ICP34.5 could provide an effective tumour therapy.  相似文献   

3.
HSV-1716 is a replication-restricted, neuroattenuated ICP 34.5 gene mutant of herpes simplex virus type 1 (HSV-1). Because of the attenuated phenotype of ICP 34.5 mutants in rodent models of HSV disease, they have been promoted as potential vaccine strains and gene therapy vectors and have been used by us and others as therapeutic agents for the treatment of experimental malignant tumors. However, all data on the phenotype of HSV-1716 and other ICP 34.5 mutants are from animal model systems, while humans are the natural hosts of HSV-1. To achieve an initial characterization of the phenotype of 1716 in human tissue, we have studied its replication in mature human skin xenografts on SCID mice. We find that replication of 1716 is severely restricted in such human skin grafts relative to both parental wild-type HSV-1 strain 17+ and the HSV-1716 revertant virus 1716R, in which the 759-bp ICP 34.5 gene deletions have been repaired. Moreover, the replication of both 1716 and 17+ is significantly better in the human skin grafts than it is in mouse skin. The implications of these findings are discussed.  相似文献   

4.
5.
6.
7.
8.
9.
Peripheral blood dendritic cells (DC) produce IFN-alpha in response to challenge by many enveloped viruses including herpes simplex virus (HSV) and HIV, whereas Sendai virus predominantly stimulates IFN-alpha production by monocytes. Glycosylated viral envelope proteins are known to be important for the induction of IFN-alpha. In this study we demonstrate that stimulation of IFN-alpha synthesis by HSV is inhibited by a number of monosaccharides, including fucose, N-acetylglucosamine, and N-acetylgalactosamine as well as the yeast polysaccharide mannan, supporting a role for lectin(s) in the IFN-alpha stimulation pathway. Furthermore, antiserum to the mannose receptor (MR) also inhibited HSV, vesicular stomatitis virus, and HIV-induced IFN-alpha production, but failed to inhibit the IFN-alpha induced by Sendai virus. We further demonstrated that freshly isolated blood DC and IFN-alpha-producing cells responding to HSV stimulation express the MR. This study therefore implicates the MR as an important receptor for the nonspecific recognition of enveloped viruses by DC and the subsequent stimulation of IFN-alpha production by these viruses. Thus, the MR probably serves as a critical link between innate and adaptive immunity to viruses, especially given the role of the MR in Ag capture by DC and the importance of IFN-alpha in shaping immunity.  相似文献   

10.
Both IL-12 and IFN-gamma have been implicated as principal inducers of type 1 immune responses required for the elimination of intracellular pathogens, such as viruses. We examined the in vivo antiviral role of both cytokines during coronavirus-induced hepatitis in a mouse hepatitis virus (MHV) model. The absence of IFN-gamma function in mice with a targeted disruption of the IFN-gamma R alpha-chain gene (IFN-gamma R -/-) resulted in increased susceptibility to coronaviral hepatitis associated with augmented viral replication and increased hepatocellular injury. The mutant mice showed a type 1 lymphokine response characterized by the normal high IFN-gamma and low IL-4 production. Unlike MHV-infected wild-type mice, however, the mutant IFN-gamma R -/- mice showed no increase in IL-12 p4O gene expression, similar to that in naive animals. IL-12 treatment failed to restore host resistance in IFN-gamma R -/- mice, but significantly protected MHV-susceptible C57BL/6 mice against lethal infection, although less than IFN-gamma treatment. Mice protected by IL-12 or IFN-gamma showed resistance against an otherwise lethal second MHV infection. Our data demonstrate that despite reduced IL-12 gene expression and defective IFN-gamma R function, virus-induced IFN-gamma production can occur. Furthermore, they emphasize the pivotal antiviral role of IFN-gamma in protection against acute coronavirus-induced hepatitis.  相似文献   

11.
The beta2 subunit of the Na,K-ATPase displays functional properties of both an integral constituent of an ion pump and an adhesion and neurite outgrowth-promoting molecule in vitro. To investigate whether the beta1 subunit of the Na,K-ATPase can functionally substitute for the beta2 isoform in vivo, we have generated beta2/beta1 knock-in mice by homologous recombination in embryonic stem cells. In beta2/beta1 knock-in mice, expression of beta2 was abolished, whereas beta1 mRNA expression from the mutated gene amounted to approximately 15% of the normal expression of beta2 in the adult mouse brain and prevented the juvenile lethality observed for beta2 null mutant mice. In contrast to beta2 null mutant mice, the overall morphological structure of all analyzed brain regions was normal. By immunohistochemical analysis, beta1 expression was detected in photoreceptor cells in the retina of knock-in mice at an age when expression of beta1 and beta2, respectively, is downregulated and persisting in the wild-type mice. Morphological analysis by light and electron microscopy revealed a progressive degeneration of photoreceptor cells. Apoptotic death of photoreceptor cells determined quantitatively by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis increased in beta2/beta1 knock-in mice with age. These observations suggest that the beta1 subunit of the Na,K-ATPase can substitute sufficiently, at least in certain cell types, for the role of the beta2 subunit as a component of a functional Na,K-ATPase, but they do not allow us to determine the possible role of the beta2 subunit as an adhesion molecule in vivo.  相似文献   

12.
13.
MuMig (murine monokine induced by gamma interferon) and Crg-2 (cytokine responsive gene 2) are two murine chemokines of the CXC family that are induced by the interferons (IFNs): MuMig specifically by IFN-gamma and Crg-2 by IFN-alpha, IFN-beta, and IFN-gamma. To investigate the biological roles of these chemokines, recombinant vaccinia viruses (rVVs) encoding either MuMig or Crg-2 were constructed. In vitro, the chemokine-encoding rVVs replicated to similar levels to the control virus. Athymic nude mice inoculated with 10(5) PFU or less of VV-HA-Mig or VV-HA-Crg-2 resolved the infection successfully whereas mice given a similar dose of the control virus VV-HA-TK died from generalized infection. At higher doses, there was mortality in all groups but death was significantly delayed in mice infected with either chemokine-encoding rVV compared with those infected with the control virus. Virus-encoded MuMig and Crg-2 enhanced the cytolytic activity of NK cells and splenic cellularity by two- to threefold and resulted in significant increases in mononuclear cell infiltration in the livers of mice. Using specific neutralizing or depleting antibodies, we have established that the control of rVV replication in athymic nude mice, as a consequence of virus-expressed MuMig and Crg-2, requires NK cells and IFN-alpha, IFN-beta, and IFN-gamma.  相似文献   

14.
We have evaluated the potential of conferring protective immunity to herpes simplex virus type 2 (HSV-2) by selectively inducing an HSV-specific CD8(+) cytotoxic T-lymphocyte (CTL) response directed against a single major histocompatibility complex class I-restricted CTL recognition epitope. We generated a recombinant vaccinia virus (rVV-ES-gB498-505) which expresses the H-2Kb-restricted, HSV-1/2-cross-reactive CTL recognition epitope, HSV glycoprotein B residues 498 to 505 (SSIEFARL) (gB498-505), fused to the adenovirus type 5 E3/19K endoplasmic reticulum insertion sequence (ES). Mucosal immunization of C57BL/6 mice with this recombinant vaccinia virus induced both a primary CTL response in the draining lymph nodes and a splenic memory CTL response directed against HSV gB498-505. To determine the ability of the gB498-505-specific memory CTL response to provide protection from HSV infection, immunized mice were challenged with a lethal dose of HSV-2 strain 186 by the intranasal (i.n.) route. Development of the gB498-505-specific CTL response conferred resistance in 60 to 75% of mice challenged with a lethal dose of HSV-2 and significantly reduced the levels of infectious virus in the brains and trigeminal ganglia of challenged mice. Finally, i.n. immunization of C57BL/6 mice with either a recombinant influenza virus or a recombinant vaccinia virus expressing HSV gB498-505 without the ES was also demonstrated to induce an HSV-specific CTL response and provide protection from HSV infection. This finding confirms that the induction of an HSV-specific CTL response directed against a single epitope is sufficient for conferring protective immunity to HSV. Our findings support the role of CD8(+) T cells in the control of HSV infection of the central nervous system and suggest the potential importance of eliciting HSV-specific mucosal CD8(+) CTL in HSV vaccine design.  相似文献   

15.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10DeltaPK). ICP10DeltaPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10DeltaPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10DeltaPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

16.
17.
We have previously described a strategy for the recovery of a synthetic influenza A virus wild-type (wt) PB2 gene (derived from influenza A/Ann Arbor/6/60 [AA] virus) into an infectious virus. It was possible to introduce an attenuating temperature-sensitive (ts) mutation at amino acid residue 265 of the AA wt PB2 gene and to rescue this mutant gene into infectious virus. Application of this new technology to influenza A virus vaccine development requires that multiple attenuating mutations be introduced to achieve a satisfactorily attenuated virus that retains the attenuation (att) phenotype following replication in vivo. In this report, we demonstrate that putative ts mutations at amino acids 112, 556, and 658 each indeed specify the ts and att phenotypes. Each of these mutations was introduced into a cDNA copy of the AA mutant mt265 PB2 gene to produce three double-mutant PB2 genes, each of which was rescued into an infectious virus. In general, the double-mutant PB2 transfectant viruses were more ts and attenuated in the lower respiratory tracts of hamsters than the single-mutant transfectant viruses, and the ts phenotype of two of three double-mutant PB2 transfectant viruses was stable even after prolonged replication in the upper respiratory tracts of immunocompromised mice. Two triple-mutant PB2 transfectant viruses with three predicted amino acid substitutions resulting from five nucleotide substitutions in the cDNA were then generated. The triple-mutant PB2 transfectant viruses were more ts and more attenuated than the double-mutant PB2 transfectant viruses. These results indicate that sequential introduction of additional ts mutations into the PB2 gene can yield mutants that exhibit a stepwise increase in temperature sensitivity and attenuation compared with the preceding mutant(s) in the series. Furthermore, the level of temperature sensitivity of the transfectant viruses correlated significantly with the level of attenuation of these viruses in hamsters. Although the triple-mutant PB2 transfectant viruses were attenuated in hamsters, intranasal administration of these viruses elicited a vigorous serum hemagglutination-inhibiting antibody response, and this was associated with resistance of the lower respiratory tract to subsequent wt virus challenge. These observations suggest the feasibility of using PB2 reverse genetics to generate a live influenza A virus vaccine donor strain that contains three attenuating mutations in one gene. It is predicted that reassortant viruses derived from such a donor virus would have the properties of attenuation, genetic stability, immunogenicity, and protective efficacy against challenge with wt virus.  相似文献   

18.
Human villous and extravillous trophoblast populations were isolated from first- and third-trimester placentae and were stimulated with viral and non-viral inducers to produce interferons (IFNs). Polyriboinosinic/polyribocytidylic acid [poly(I:C)] induced exclusively IFN-beta in trophoblast cultures, whereas viruses induced mixtures of IFN-alpha subtypes and -beta. The level of IFN production was dependent on the trophoblast population, type of inducer and the stage of differentiation of the trophoblast. First-trimester extravillous trophoblast cultures produced greater than five-fold more IFN than third-trimester villous trophoblast on a per cell basis, whereas term syncytiotrophoblast produced twice as much IFN as term mononuclear villous trophoblast when stimulated with the same inducer. Pretreatment of trophoblast cultures with platelet-derived growth factor and granulocyte/macrophage-colony stimulating factor (GM-CSF) increased the trophoblast IFN production. Tandem high-performance affinity chromatography of the virus-induced trophoblast IFNs resulted in the isolation of trophoblast IFN-alpha and -beta with specific antiviral activities of 0.75-2.73 x 10(8) IU/ml protein. The trophoblast-induced IFNs have antiproliferative and immunosuppressive properties, and, furthermore, activated natural killer cell activity. These data may suggest the possible roles of these IFNs during embryonic development with regard to protection of the fetus against viral infection and maternal immunity.  相似文献   

19.
Herpes simplex virus (HSV) inhibits major histocompatibility complex (MHC) class I expression in infected cells and does so much more efficiently in human cells than in murine cells. Given this difference, if MHC class I-restricted T cells do not play an important role in protection of mice from HSV, an important role for these cells in humans would be unlikely. However, the contribution of MHC class I-restricted T cells to the control of HSV infection in mice remains unclear. Further, the mechanisms by which these cells may act to control infection, particularly in the nervous system, are not well understood, though a role for gamma interferon (IFN-gamma) has been proposed. To address the roles of MHC class I and of IFN-gamma, C57BL/6 mice deficient in MHC class I expression (beta2 microglobulin knockout [beta2KO] mice), in IFN-gamma expression (IFN-gammaKO mice), or in both (IFN-gammaKO/beta2KO mice) were infected with HSV by footpad inoculation. beta2KO mice were markedly compromised in their ability to control infection, as indicated by increased lethality and higher concentrations of virus in the feet and spinal ganglia. In contrast, IFN-gamma appeared to play at most a limited role in viral clearance. The results suggest that MHC class I-restricted T cells play an important role in protection of mice against neuroinvasive HSV infection and do so largely by mechanisms other than the production of IFN-gamma.  相似文献   

20.
A second-generation replication-conditional herpes simplex virus type 1 (HSV) vector defective for both ribonucleotide reductase (RR) and the neurovirulence factor gamma34.5 was generated and tested for therapeutic safety and efficiency in two different experimental brain tumor models. In culture, cytotoxic activity of this double mutant HSV vector, MGH-1, for 9L gliosarcoma cells was similar to that of the HSV mutant, R3616, which is defective only for gamma34.5, but was significantly weaker than that of the HSV mutant hrR3, which is defective only for RR. The diminished tumoricidal effect of the gamma34.5 mutants could be accounted for by their reduced ability to replicate in 9L cells. The MGH-1 vector did not achieve significant prolongation of survival in vivo in the syngeneic 9L rat gliosarcoma model for either single brain tumor focus or multiple intracerebral and leptomeningeal tumors, when the vector was applied intratumorally or intrathecally, respectively, and with or without subsequent ganciclovir (GCV) treatment. In identical 9L brain tumor models with single and multiple foci, application of hrR3 with or without GCV was previously shown to result in marked long-term survival. Contrary to the findings with intrathecal injection of hrR3, no vector-related mortality was observed in any animals treated with MGH-1. Thus, in these rat brain tumor models, the double mutant, replication-conditional HSV vector MGH-1 showed a higher therapeutic safety than the RR-minus vector, hrR3, but had clearly decreased therapeutic efficiency compared to hrR3. The development of new HSV vectors for brain tumor gene therapy will require a balance between maximizing therapeutic efficacy and minimizing toxicity to the brain. Standardized application in brain tumor models as presented here will help to screen new HSV vectors for these requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号