首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The application of nanoparticles (NPs) to drug delivery has led to the development of novel nanotherapeutics for the treatment of various diseases including cancer. However, clinical use of NP‐mediated drug delivery has not always translated into improved survival of cancer patients, in part due to the suboptimal properties of NP platforms, such as premature drug leakage during preparation, storage, or blood circulation, lack of active targeting to tumor tissue and cells, and poor tissue penetration. Herein, an innovative reactive oxygen species (ROS)‐responsive polyprodrug is reported that can self‐assemble into stable NPs with high drug loading. This new NP platform is composed of the following key components: (i) polyprodrug inner core that can respond to ROS for triggered release of intact therapeutic molecules, (ii) polyethylene glycol (PEG) outer shell to prolong blood circulation; and (iii) surface‐encoded internalizing RGD (iRGD) to enhance tumor targeting and tissue penetration. These targeted ROS‐responsive polyprodrug NPs show significant inhibition of tumor cell growth both in vitro and in vivo.  相似文献   

2.
Breast cancer is a major cause of cancer mortality. Regarding the advantages of polymeric nanoparticles as drug delivery systems with targeting potential, in this study the antitumor mechanism of targeted docetaxel polymeric nanoparticles of Ecoflex® was exploited. Since the overexpression of HER‐2 receptor in breast cancer cases is associated with poor prognosis and more aggressive disease, the proposed nanoparticles were conjugated to HER‐2 specific aptamer molecules. In vitro cytotoxicity was evaluated by MTT assay. Flow‐cytometry analysis was performed to evaluate the cellular uptake of nanoparticles loaded with a fluorescent probe. Anti‐migration effects of samples were studied. Annexin IV‐FITC and propidium iodide were implemented to investigate apoptosis induction and cell cycle analysis. Enhanced cytotoxicity compared with free docetaxel was explained considering improved cellular uptake of the nanoparticles and induced apoptosis in a larger portion of cells. Lower relative migration demonstrated enhanced anti‐migration effect of nanoparticles, and cell cycle was arrested in G2/M phase using both formulations so the anti‐microtubule mechanism of the drug was not altered. Therefore, this system could offer a potential substitute for the currently marketed docetaxel formulations, which may reduce adverse effects of the drug, while further in vivo and clinical investigations are required.Inspec keywords: cancer, molecular biophysics, drug delivery systems, fluorescence, biomedical materials, drugs, tumours, nanomedicine, proteins, toxicology, biochemistry, nanoparticles, diseases, cell motility, polymersOther keywords: antitumor mechanism, targeted docetaxel polymeric nanoparticles, HER‐2 specific aptamer molecules, MTT assay, flow‐cytometry analysis, annexin IV‐FITC, apoptosis induction, cell cycle, lower relative migration, cancer mortality, drug delivery systems, aggressive disease, in vitro cytotoxicity, cellular uptake, breast cancer cell apoptosis, antimetastatic effect, HER‐2 aptamer‐targeted Ecoflex nanoparticles, antimigration effect, antimicrotubule mechanism, HER‐2 receptor, fluorescent probe, propidium iodide  相似文献   

3.
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting—two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.  相似文献   

4.
The preferred delivery systems for anticancer drugs would be the one which would have selective and effective destruction of cancer cells. In the present study etoposide (ETO) loaded nanoparticles (NP) were prepared using PLGA (ETO-PLGA NP), PLGA-MPEG block copolymer (ETO-PLGA-MPEG NP) and PLGA-Pluronic copolymer (ETO-PLGA-PLU NP) and they were evaluated for cytotoxicity and cellular uptake studies using two cancer cell lines, L1210 and DU145. The IC50 values for L1210 cells were 18.0, 6.2, 4.8 and 5.4 microM and for DU145 cells the IC50 values were 98.4, 75.1, 60.1 and 71.3 microM for ETO, ETO-PLGA NP, ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP respectively. The increased cytotoxicities were attributed to increased uptake of the NPs by the cells. Moreover the ETO loaded PLGA-MPEG NP and PLGA-Pluronic NP showed a sustained cytotoxic effect till 5 days on both the cell lines. Results of the long term cytotoxicity study concluded that the drug loaded PLGA nanoparticulate formulations were efficient in decreasing the viability of the L1210 cells over a period of three days, whereas the pure drug exerted its maximum efficiency on the day one itself. Z-stack confocal images of NPs showed fluorescence activity in each section of DU 145 and L1210 cells indicating that the nanoparticles were internalized by the cells. The study concluded that ETO loaded PLGA NPs had higher cytotoxicity compared with that of the free drug and ETO-PLGA-MPEG NP and ETO-PLGA-PLU NP had higher cell uptake efficiency compared with that of ETO-PLGA NP. The developed PLGA based NPs shows promise to be used for cancer therapy.  相似文献   

5.
Applying nanotechnology to plant science requires efficient systems for the delivery of nanoparticles (NPs) to plant cells and tissues. The presence of a cell wall in plant cells makes it challenging to extend the NP delivery methods available for animal research. In this work, research is presented which establishes an efficient NP delivery system for plant tissues using the biolistic method. It is shown that the biolistic delivery of mesoporous silica nanoparticle (MSN) materials can be improved by increasing the density of MSNs through gold plating. Additionally, a DNA-coating protocol is used based on calcium chloride and spermidine for MSN and gold nanorods to enhance the NP-mediated DNA delivery. Furthermore, the drastic improvement of NP delivery is demonstrated when the particles are combined with 0.6 μm gold particles during bombardment. The methodology described provides a system for the efficient delivery of NPs into plant cells using the biolistic method.  相似文献   

6.
Nanoparticle (NP)-mediated drug/gene delivery involves phenomena at broad range spatial and temporal scales. The interplay between these phenomena makes the NP-mediated drug/gene delivery process very complex. In this paper, we have identified four key steps in the NP-mediated drug/gene delivery: (i) design and synthesis of delivery vehicle/platform; (ii) microcirculation of drug carriers (NPs) in the blood flow; (iii) adhesion of NPs to vessel wall during the microcirculation and (iv) endocytosis and exocytosis of NPs. To elucidate the underlying physical mechanisms behind these four key steps, we have developed a multiscale computational framework, by combining all-atomistic simulation, coarse-grained molecular dynamics and the immersed molecular electrokinetic finite element method (IMEFEM). The multiscale computational framework has been demonstrated to successfully capture the binding between nanodiamond, polyethylenimine and small inference RNA, margination of NP in the microcirculation, adhesion of NP to vessel wall under shear flow, as well as the receptor-mediated endocytosis of NPs. Moreover, the uncertainties in the microcirculation of NPs has also been quantified through IMEFEM with a Bayesian updating algorithm. The paper ends with a critical discussion of future opportunities and key challenges in the multiscale modeling of NP-mediated drug/gene delivery. The present multiscale modeling framework can help us to optimize and design more efficient drug carriers in the future.  相似文献   

7.
Fatty alcohols are commonly used in lipid-based drug delivery systems including parenteral emulsions and solid lipid nanoparticles (NPs). The purpose of these studies was to determine whether horse liver alcohol dehydrogenase (HLADH), a NAD-dependent enzyme, could metabolize the fatty alcohols within the NPs and thus serve as a mechanism to degrade these NPs in the body. Solid nanoparticles (<100 nm) were engineered from oil-in-water microemulsion precursors using emulsifying wax NF as the oil phase and polyoxyethylene 20-stearyl ether (Brij 78) as the surfactant. Emulsifying wax contains both cetyl and stearyl alcohols. NPs were incubated with the enzyme and NAD+ at 37 degrees C for up to 48 h, and the concentrations of fatty alcohols were quantitatively determined over time by gas chromatography (GC). The concentrations of cetyl alcohol and stearyl alcohol within the NPs decreased to only 10-20% remaining after 15-24 h of incubation. In parallel, NP size, turbidity and the fluorescence intensity of NADH all increased over time. It was concluded that horse liver alcohol dehydrogenase/NAD+ was able to metabolize the fatty alcohols within the NPs, suggesting that NPs made of fatty alcohols may be metabolized in the body via endogenous alcohol dehydrogenase enzyme systems.  相似文献   

8.
The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Polyaspartic acid and polylactic acid are the most intensively studied biodegradable polymers. In the present study, novel amphiphilic biodegradable co-polymer NPs, poly(L-aspartic acid-co-lactic acid) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) (poly(AA-co-LA)/DPPE) is synthesized and subsequently used to encapsulate an antitumor drug doxorubicin (DOX). The formulation parameters of the NPs are optimized to improve encapsulation efficiency. The resulting drug-loaded NPs possess better size homogeneity (polydispersity) and exhibit pH-responsive drug release profiles. Cellular viability assays indicate that the poly(AA-co-LA)/DPPE NPs did not induce cell death, whereas doxorubicin encapsulated NPs were cytotoxic to various types of tumor cells. In addition, the free NPs could not enter the cell nuclei after internalized in tumor cells. The DOX-loaded NPs exhibit efficient intracellular delivery in tumor cells with co-localization in lysosome and delay entering into the nucleus, which suggests a time- and pH-dependent drug release profile within cells. When applied to deliver chemotherapeutics to a mouse xenograft model of human lung adenocarcinoma, DOX-loaded NPs have a comparable antitumor activity with free DOX, and greatly reduce systemic toxicity and mortality. The delivery of cytotoxic drugs directly to the nucleus specifically within tumor cells is of great interest. These results demonstrate the feasibility of the application of the amphiphilic polyaspartic acid derivative, poly(AA-co-LA)/DPPE, as a nanocarrier for cell nuclear delivery of potent antitumor drugs.  相似文献   

9.
Human epidermal growth factor receptor 2 (HER‐2) is overexpressed in 20–30% of human breast cancers, associated with poor prognosis and tumour aggression. The aim of this study was the production of trastuzumab‐targeted Ecoflex nanoparticles (NPs) loaded with docetaxel and in vitro evaluation of their cytotoxicity and cellular uptake. The NPs were manufactured by electrospraying and characterised regarding size, zeta potential, drug loading, and release behaviour. Then their cytotoxicity was evaluated by MTT assay against an HER‐2‐positive cell line, BT‐474, and an HER‐2‐negative cell line, MDA‐MB‐468. The cellular uptake was studied by flow cytometry and fluorescent microscope. The particle size of NPs was in an appropriate range, with relatively high drug entrapment and acceptable release efficiency. The results showed no cytotoxicity for the polymer, but the significant increment of cytotoxicity was observed by treatment with docetaxel‐loaded NPs in both HER‐2‐positive and HER‐2‐negative cell lines, in comparison with the free drug. The trastuzumab‐targeted NPs also significantly enhanced cytotoxicity against BT‐474 cells, compared with non‐targeted NPs.Inspec keywords: cancer, proteins, biomedical materials, nanofabrication, drug delivery systems, cellular biophysics, biological organs, nanomedicine, toxicology, tumours, nanoparticles, biomedical optical imaging, fluorescence, particle sizeOther keywords: human breast cancers, tumour aggression, trastuzumab‐targeted Ecoflex nanoparticles, cellular uptake, zeta potential drug loading, HER‐2‐positive cell line, HER‐2‐negative cell line, MDA‐MB‐468, particle size, trastuzumab‐conjugated nanoparticles, electrospraying technique, human epidermal growth factor receptor, cytotoxicity, nontargeted nanoparticles, butylene adipate‐co‐butylene terephthalate, trastuzumab‐targeted NP, docetaxel‐loaded NP  相似文献   

10.
Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia, which has attracted so much attention in bone regeneration due to its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0–500?µg/mL) were prepared and showed an average particle size of about 150?nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy of Sim-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.  相似文献   

11.
The aim of this study was to explore the possibility of obtaining nanoparticles (NPs) containing high amounts of cyclodextrin (CD) derivatives such as carboxymethyl-β-CD and sulphobutyl ether-β-CD. The rationale used was to combine the drug solubilizing and stabilizing properties of cyclodextrins (CDs) with the mucoadhesive properties of chitosan (CS) in a unique nanoparticulate drug delivery system. The size of the resulting NPs was affected by the nature of the CDs, ranging between 275 and 550?nm, whereas the zeta potential of the NPs was always positive and close to +35?mV. The positive zeta values, together with the results from NMR studies, suggest that CS is the major compound on the surface of the NPs, while CD molecules are strongly associated with the NP matrix. The empirical composition of the NPs was quantified by elemental analysis and the results indicated that the amount of CD associated with the NPs was strictly dependent on its electrostatic charge. Finally, in vitro stability studies indicated that the presence of CDs in the NP structure can prevent the aggregation of this nanometric carrier system in simulated intestinal fluid. Overall, this new type of NP represents an attractive drug delivery platform of particular interest for the oral administration of drugs with low bioavailability.  相似文献   

12.
Targeted delivery of nanomedicine/nanoparticles (NM/NPs) to the site of disease (e.g., the tumor or lung injury) is of vital importance for improved therapeutic efficacy. Multimodal imaging platforms provide powerful tools for monitoring delivery and tissue distribution of drugs and NM/NPs. This study introduces a preclinical imaging platform combining X‐ray (two modes) and fluorescence imaging (three modes) techniques for time‐resolved in vivo and spatially resolved ex vivo visualization of mouse lungs during pulmonary NP delivery. Liquid mixtures of iodine (contrast agent for X‐ray) and/or (nano)particles (X‐ray absorbing and/or fluorescent) are delivered to different regions of the lung via intratracheal instillation, nasal aspiration, and ventilator‐assisted aerosol inhalation. It is demonstrated that in vivo propagation‐based phase‐contrast X‐ray imaging elucidates the dynamic process of pulmonary NP delivery, while ex vivo fluorescence imaging (e.g., tissue‐cleared light sheet fluorescence microscopy) reveals the quantitative 3D drug/particle distribution throughout the entire lung with cellular resolution. The novel and complementary information from this imaging platform unveils the dynamics and mechanisms of pulmonary NM/NP delivery and deposition for each of the delivery routes, which provides guidance on optimizing pulmonary delivery techniques and novel‐designed NM for targeting and efficacy.  相似文献   

13.
Many therapeutic drugs are excluded from entering the brain due to their lack of transport through the blood–brain barrier (BBB). The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous diseases. To overcome this problem, a viral fusion peptide (gH625) derived from the glycoprotein gH of Herpes simplex virus type 1 is developed, which possesses several advantages including high cell translocation potency, absence of toxicity of the peptide itself, and the feasibility as an efficient carrier for delivering therapeutics. Therefore, it is hypothesized that brain delivery of nanoparticles conjugated with gH625 should be efficiently enhanced. The surface of fluorescent aminated polystyrene nanoparticles (NPs) is functionalized with gH625 via a covalent binding procedure, and the NP uptake mechanism and permeation across in vitro BBB models are studied. At early incubation times, the uptake of NPs with gH625 by brain endothelial cells is greater than that of the NPs without the peptide, and their intracellular motion is mainly characterized by a random walk behavior. Most importantly, gH625 peptide decreases NP intracellular accumulation as large aggregates and enhances the NP BBB crossing. In summary, these results establish that surface functionalization with gH625 may change NP fate by providing a good strategy for the design of promising carriers to deliver drugs across the BBB for the treatment of brain diseases.  相似文献   

14.
Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell‐mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer‐specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP‐PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti‐BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP‐PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP‐PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell–cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The “self‐powered” immune cell‐mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.  相似文献   

15.
The cellular uptake and distribution of five types of well-characterized anatase and rutile TiO(2) nanoparticles (NPs) in A549 lung epithelial cells is reported. Static light scattering (SLS), in-vitro Raman microspectroscopy (μ-Raman) and transmission electron spectroscopy (TEM) reveal an intimate correlation between the intrinsic physicochemical properties of the NPs, particle agglomeration, and cellular NP uptake. It is shown that μ-Raman facilitates chemical-, polymorph-, and size-specific discrimination of endosomal-particle cell uptake and the retention of particles in the vicinity of organelles, including the cell nucleus, which quantitatively correlates with TEM and SLS data. Depth-profiling μ-Raman coupled with hyperspectral data analysis confirms the location of the NPs in the cells and shows that the NPs induce modifications of the biological matrix. NP uptake is found to be kinetically activated and strongly dependent on the hard agglomeration size-not the primary particle size-which quantitatively agrees with the measured intracellular oxidative stress. Pro-inflammatory responses are also found to be sensitive to primary particle size.  相似文献   

16.
Chithrani BD  Chan WC 《Nano letters》2007,7(6):1542-1550
We investigated the mechanism by which transferrin-coated gold nanoparticles (Au NP) of different sizes and shapes entered mammalian cells. We determined that transferrin-coated Au NP entered the cells via clathrin-mediated endocytosis pathway. The NPs exocytosed out of the cells in a linear relationship to size. This was different than the relationship between uptake and size. Furthermore, we developed a mathematical equation to predict the relationship of size versus exocytosis for different cell lines. These studies will provide guidelines for developing NPs for imaging and drug delivery applications, which will require "controlling" NP accumulation rate. These studies will also have implications in determining nanotoxicity.  相似文献   

17.
Nanoparticles (NPs) are versatile scaffolds for numerous biomedical applications including drug delivery and bioimaging. The surface functionality of NPs essentially dictates intracellular NP uptake and controls their therapeutic action. Using several pharmacological inhibitors, it is demonstrated that the cellular uptake mechanisms of cationic gold NPs in both cancer (HeLa) and normal cells (MCF10A) strongly depend on the NP surface monolayer, and mostly involve caveolae and dynamin‐dependent pathways as well as specific cell surface receptors (scavenger receptors). Moreover, these NPs show different uptake mechanisms in cancer and normal cells, providing an opportunity to develop NPs with improved selectivity for delivery applications.  相似文献   

18.
Lycopene (LYC) is known to protect cells from oxidative damage caused by free radicals in human tissues. In the present study, the authors designed a LYC‐loaded sialic acid (SA)‐conjugated poly(D,L‐lactide‐co‐glycolide) (PLGA) nanoparticle (LYC‐NP) to enhance the therapeutic efficacy of LYC in acute kidney injury. The characteristics of the LYC‐NPs were defined according to particle size, morphology, and in vitro drug release. The LYC‐NPs exhibited a controlled release of LYC over 48 h. Confocal laser scanning microscopy clearly highlighted the targeting potential of SA. Enhanced green fluorescence was observed for the LYC‐NPs in H2 O2 ‐treated human umbilical vein endothelial cells, indicating enhanced internalisation of NPs. The LYC‐NPs showed significantly greater cell viability than H2 O2 ‐treated cells. In addition, the LYC‐NPs remarkably reduced proinflammatory cytokine levels, attributable mainly to the increased cellular internalisation of the SA‐based carrier delivery system. Furthermore, protein levels of caspase‐3 and ‐9 were significantly down‐regulated after treatment with the LYC‐NPs. Overall, they have demonstrated that SA‐conjugated PLGA‐NPs containing LYC could be used to treat kidney injury.Inspec keywords: fluorescence, biomedical materials, biological tissues, cellular biophysics, drugs, proteins, molecular biophysics, injuries, drug delivery systems, kidney, nanomedicine, biochemistry, optical microscopy, nanoparticles, nanofabrication, cancer, toxicology, blood vessels, particle sizeOther keywords: sialic acid‐conjugated PLGA nanoparticles, chemotherapeutic drug‐induced kidney injury, LYC‐NP, LYC‐loaded sialic acid‐conjugated poly(D,L‐lactide‐co‐glycolide) nanoparticle, SA‐conjugated PLGA‐NP, protective effect, lycopene, human tissues, particle size, in vitro drug release, confocal laser scanning microscopy, green fluorescence, human umbilical vein endothelial cells, cell viability, proinflammatory cytokine levels, cellular internalisation, SA‐based carrier delivery system, time 48.0 hour  相似文献   

19.
Drug delivery is one of the major challenges in the treatment of central nervous system disorders. The brain needs to be protected from harmful agents, which are done by the capillary network, the so‐called blood–brain barrier (BBB). This protective guard also prevents the delivery of therapeutic agents to the brain and limits the effectiveness of treatment. For this reason, various strategies have been explored by scientists for overcoming the BBB from disruption of the BBB to targeted delivery of nanoparticles (NPs) and cells and immunotherapy. In this review, different promising brain drug delivery strategies including disruption of tight junctions in the BBB, enhanced transcellular transport by peptide‐based delivery, local delivery strategies, NP delivery, and cell‐based delivery have been fully discussed.Inspec keywords: drugs, tumours, neurophysiology, blood, biochemistry, brain, drug delivery systems, nanoparticles, biomedical materials, molecular biophysics, cellular biophysics, nanomedicine, diseases, proteins, reviewsOther keywords: blood–brain barrier, neurodegenerative disorders, central nervous system disorders, BBB, therapeutic agents, targeted delivery, peptide‐based delivery, local delivery strategies, NP delivery, cell‐based delivery, brain drug delivery strategies, brain tumours, nanoparticles, immunotherapy, review  相似文献   

20.
The last decade has seen remarkable advances in the development of drug delivery systems as alternative to parenteral injection‐based delivery of insulin. Neonatal Fc receptor (FcRn)‐mediated transcytosis has been recently proposed as a strategy to increase the transport of drugs across the intestinal epithelium. FcRn‐targeted nanoparticles (NPs) could hijack the FcRn transcytotic pathway and cross the epithelial cell layer. In this study, a novel nanoparticulate system for insulin delivery based on porous silicon NPs is proposed. After surface conjugation with albumin and loading with insulin, the NPs are encapsulated into a pH‐responsive polymeric particle by nanoprecipitation. The developed NP formulation shows controlled size and homogeneous size distribution. Transmission electron microscopy (TEM) images show successful encapsulation of the NPs into pH‐sensitive polymeric particles. No insulin release is detected at acidic conditions, but a controlled release profile is observed at intestinal pH. Toxicity studies show high compatibility of the NPs with intestinal cells. In vitro insulin permeation across the intestinal epithelium shows approximately fivefold increase when insulin is loaded into FcRn‐targeted NPs. Overall, these FcRn‐targeted NPs offer a toolbox in the development of targeted therapies for oral delivery of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号