首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y2O3:Eu3+ core-in-multi-hollow microspheres were synthesized via a facile hydrothermal method in the presence of glucose followed by a subsequent heat-treatment process. X-ray diffraction (XRD) pattern shows that the as-obtained hollow spheres are cubic phase of Y2O3. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images indicate that the samples are three layer hollow spheres with a diameter of 2-4 microm and the outermost wall thickness of 100 nm, the size of the inner core is about 300-400 nm, and the sub-outer wall thickness is about 100 nm. X-ray energy dispersive spectrum (EDS) shows that the samples are composed of Y, Eu and O. Photoluminescence spectra show that the hollow spheres have a strong characteristic red emission corresponding to the 5D0 - 7F2 transition of Eu3+ ions under ultraviolet excitation. This method can be used to synthesize other rare earth oxide hollow luminescent materials.  相似文献   

2.
李渝  尹剑波  赵晓鹏 《功能材料》2011,42(2):336-338
Y2O3:Eu3+是最重要的红色荧光材料,通过两步法制备了具有单分散性的Li掺杂Y2O3:Eu3+微球并研究了其发光行为.首先采用共沉淀法制备出单分散Y2O3:Eu3+微球,而后在含有LiOH的乙醇悬浊液中利用超声-水热法获得Li掺杂Y2O3:Eu3+微球.通过SEM、XRD、PL光谱等分析,发现Li掺杂可明显降低Y2...  相似文献   

3.
Flower-like Y2O3:Eu3+ microspheres with strong red photoluminescent emission were successfully synthesized through a controlled solvothermal approach followed by a subsequent heat treatment. The experimental results showed that the flower-like microspheres were composed of nanopetals with the thickness of about 50 nm, and the solvent properties as well as the characteristics of the reactants were very crucial for the morphology-controlled process. Meanwhile, the formation mechanism study revealed a possible assembly and etching process. In addition, their photoluminescence property investigation indicated that the flower-like products exhibited the strongest red emission corresponding to 5D0  7F2 transition (609 nm) among the synthesized samples, implying better photoluminescence property provided by the assembled spheres with higher crystallinity and better size-distribution and suggesting their potential application in optoelectronics.  相似文献   

4.
《Optical Materials》2011,33(12):1606-1611
Red emitting Y2O3:Eu3+ (5 and 10 at.%) submicronic particles were synthesized through ultrasonic spray pyrolysis method from the pure nitrate solutions at 900 °C. The employed synthesis conditions (gradual increase of temperature within triple zone reactor and extended residence time) assured formation of spherical, dense, non-agglomerated particles that are nanostructured (crystallite size ∼20 nm). The as-prepared powders were additionally thermally treated at temperatures up to 1200 °C. A bcc Ia-3 cubic phase presence and exceptional powder morphological features were maintained with heating and are followed with particle structural changes (crystallite growth up to 130 nm). Emission spectra were studied after excitation with 393 nm wavelength and together with the decay lifetimes for Eu3+ ion 5D0 and 5D1 levels revealed the effect of powder nanocrystalline nature on its luminescent properties. The emission spectra showed typical Eu3+ 5D0  7Fi (i = 0, 1, 2, 3, 4) transitions with dominant red emission at 611 nm, while the lifetime measurements revealed the quenching effect with the rise of dopant concentration and its more consistent distribution into host lattice due to the thermal treatment.  相似文献   

5.
Y2O3 rods 100 to 200 nm in diameter and 10 to 20 m in length are accessible via polyol-mediated synthesis of a precursor material with similar shape. By heating of Y(CH3COO)3 · xH2O and a defined amount of water at 190°C in diethylene glycol, the rod-like precursor material is formed. Infrared spectroscopy (IR), differential thermal analysis (DTA) and thermal gravimetry (TG) evidence that this precursor material still contains acetate. However, the precursor material can be transformed to Y2O3 by sintering at 600°C without destruction of the rod-like shape. According to X-ray powder diffraction analysis, the rods are well crystallized. They can be assumed to be with [100] orientation. By doping with Eu3+ (5 mol%), red emitting phosphor rods can be realized. With optical spectroscopy the typical line emission of Eu3+ is observed. Diffuse reflectance of Y2O3:Eu3+ rods is determined to be higher than 95% in the visible. While exciting at 254 nm (Hg-discharge), a quantum efficiency of 38.5% is proven for the prepared Y2O3:Eu3+ rods.  相似文献   

6.
7.
以金属硝酸盐和尿素为原料,采用燃烧法合成了发青绿光的BaAl2O4:Eu2+,Dy3+长余辉发光材料。采用XRD、SEM、荧光分光光度计等手段对其进行分析表征。研究结果表明:随着燃烧温度升高,燃烧反应加剧,副产物BaCO3的含量减少,BaAl2O4的结晶程度增加,晶粒尺寸增大。Ba-Al2O4:Eu2+,Dy3+的激发光谱和发射光谱峰值分别为310nm和500nm,均呈宽谱带特征,其发光是由Eu2+的4f65d1→4f7跃迁引起,长余辉特性主要基于Dy3+的电子陷阱作用。  相似文献   

8.
Fine powders of Y2Sn2O7 nanocrystals with pyrochlore structure have been successfully synthesized by the hydrothermal method in an alkaline system. The samples were characterized by X-ray diffraction, Fourier transform infrared and Raman spectroscopy. Furthermore, photoluminescence characterization of the Y2Sn2O7 nanocrystals doped with 5 mol% Eu3+ was carried out, and the results show that there were some intense and prevailing emission peaks located at 580–635 nm.  相似文献   

9.
10.
Yellow-emitting phosphor Ca2BO3Cl:Eu2+ was synthesized by a solution-combustion method. The phase structure and microstructure were determined by the X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis, respectively. The as-prepared Ca2BO3Cl:Eu2+ phosphor absorbed near ultraviolet and blue light of 320–500 nm, and showed an intense yellow emission band centered at 569 nm with the CIE coordinate of (0.453, 0.526). The lifetime of Eu2+ ions in Ca2BO3Cl:Eu2+ phosphor was measured, furthermore the temperature dependent luminescence property and mechanism were studied, which also testified that the present phosphor had a promising potential for white light-emitting diodes.  相似文献   

11.
We report an effective method to synthesize Y2O2S:Eu3+, Mg2+, Ti4+ nanoparticles. Tube-like Y(OH)3 were firstly synthesized by hydrothermal method to serve as the precursor. Nanocrystalline long-lasting phosphor Y2O2S:Eu3+, Mg2+, Ti4+ was obtained by calcinating the precursor with co-activators and S powder. XRD investigation shows a pure phase of Y2O2S, indicating no other impurity phase appeared. SEM and TEM observation reveals that the precursor synthesized via a hydrothermal routine has tube-like structure and the final phosphor reveals a hexagonal shape. The fine nanoparticles which have the particle size ranging from 30 to 50 nm show uniform size and well-dispersed distribution. From the spectrum, the main emission peaks are ascribed to Eu3+ ions transition from 5DJ (J = 0, 1, 2) to 7FJ (J = 0, 1, 2, 3, 4). After irradiation by 325 nm for 10 min, the Y2O2S:Eu3+, Mg2+, Ti4+ long-lasting phosphor shows very bright red afterglow and the longest could last for more than 1 h even after the irradiation source had been removed. It is considered that the long-lasting phosphorescence is due to the contribution from the electron traps with suitable trap depth.  相似文献   

12.
13.
《Optical Materials》2010,32(12):1787-1790
Up-converting yttrium oxysulfide nanomaterials doped with ytterbium and erbium (Y2O2S:Yb3+,Er3+) were prepared with the flux method. The precursor oxide materials were prepared using the combustion synthesis. The morphology of the oxysulfides was characterized with transmission electron microscopy (TEM). The particle size distribution was 10–110 nm, depending on the heating temperature. According to the X-ray powder diffraction (XPD), the crystal structure was found hexagonal and the particle sizes estimated with the Scherrer equation agreeded with the TEM images. Upon the 970 nm infrared (IR) laser excitation, the materials yield moderate green ((2H11/2, 4S3/2)  4I15/2 transition) and strong red (4F9/2  4I15/2) luminescence. The green luminescence was enhanced with respect to the red one by an increase in both the crystallite size and erbium concentration due to the cross-relaxation (CR) processes. The most intense up-conversion luminescence was achieved with xYb and xEr equal to 0.10 and 0.005, respectively. Above these concentrations, concentration quenching occurred.  相似文献   

14.
采用均相沉淀法和燃烧合成法制备了不同粒径的粉体材料Y2O3:Eu3+,着重研究了样品的红外光谱,探讨了纳米晶Y2O3:Eu3+与同质微米材料相比的微观结构的变化.研究发现,波数位于563 cm-1的Y(Eu)—O键的吸收峰校正高度和面积对于纳米级粒径的粉体材料随着颗粒的减小而减小,而对于同质微米材料却相反.经分析认为:Y(Eu)—O键的吸收峰校正高度和面积由Y(Eu)—O键的平均键长和Y(Eu)—O键振动态数目这两个因素决定.对于微米粉体Y(Eu)—O键长的变化起主要作用,而对于纳米粉体由于不饱和键和悬空键的形成,Y(Eu)—O键振动态数目的变化起主要作用.  相似文献   

15.
Nanocrystalline Eu3+-doped YAG powders were prepared by modified Pechini method. The structural properties were investigated with XRD, SEM and Raman spectroscopy. XRD pattern indicated that the phase-pure YAG:Eu3+ crystallites were obtained without the formation of any other phases. Raman spectrum revealed good homogeneity and crystallinity of synthesized nanopowders. The luminescent properties were studied by measurement of excitation and emission spectra, quantum yields and decay curves. The effect of Eu3+ concentration on 5D0 level lifetime was studied. The processes resulting in the relaxation of excited state (5D0 level) were discussed and the probabilities of radiative and nonradiative processes were calculated using the model of f–f transition intensities. It was found that the observed shortening of 5D0 level lifetime with Eu concentration is caused by increase of nonradiative process probability.  相似文献   

16.
采用微波法合成了红色长余辉发光材料Y2O2S:Eu3+,Si 4+,Zn2+,研究了微波辐射功率和加热时间对制备Y2O2S:Eu3+,Si 4+,Zn2+的影响。并且对样品进行了XRD、SEM、荧光光谱和热释光谱等表征。XRD测试表明所制备的Y2O2S:Eu3+,Si 4+,Zn2+为单相,六方晶系;荧光光谱测试表明,用λem=626nm作为监控波长,在200~400nm之间有宽的激发光谱,峰值位于325nm。而发射光谱的谱线较窄,来源于Eu3+的5 D0→7F2跃迁的发射峰627.0nm最强。其中以辐射功率为750w,反应时间为25min所制备的样品发光性能最好。  相似文献   

17.
LaMgAl11O19, is a kind of rare earth aluminate with the hexagonal structure, which has been used as a host material for the luminescence of various rare earth and magnet-like ions. LaMgAl11O19:Eu3+ phosphors have been prepared through the one-pot method. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1,400 degrees C. In LaMgAl11O19:Eu3+ phosphors, the Eu3+ shows its characteristic red emission at 615 nm (5D0-7F2) upon excitation into 404 nm, with an optimum doping concentration of 15 mol% of La3+ in the host lattices.  相似文献   

18.
Electroluminescence of Y2O3:Eu and Y2O3:Sm films, as well as the films coactivated with Eu and Sm, is studied. The electroluminescence spectra are measured. The physical mechanism of electroluminescence is analyzed It is shown that the increase in the heat treatment temperature and the content of doping impurities of the films enhances the intensity of electroluminescence. Additional doping of Y2O3:EuF3 films by the SmF3 impurity, practically does not influence the emission spectrum.  相似文献   

19.
Cubic and/or monoclinic Y2O3:Eu3+ nanoparticles (10–50 nm) were made continuously without post-processing by single-step, flame spray pyrolysis (FSP). These particles were characterized by X-ray diffraction, nitrogen adsorption and transmission electron microscopy. Photoluminescence (PL) emission and time-resolved PL intensity decay were measured from these powders. The influence of particle size on PL was examined by annealing (at 700–1300°C for 10 h) as-prepared, initially monoclinic Y2O3:Eu3+ nanoparticles resulting in larger 0.025–1 μm, cubic Y2O3:Eu3+. The influence of europium (Eu3+) content (1–10 wt%) on sintering dynamics as well as optical properties of the resulting powders was investigated. Longer high-temperature particle residence time during FSP resulted in cubic nanoparticles with lower maximum PL intensity than measured by commercial micron-sized bulk Y2O3:Eu3+ phosphor powder. After annealing as-prepared 5 wt% Eu-doped Y2O3 particles at 900, 1100 and 1300°C for 10 h, the PL intensity increased as particle size increased and finally (at 1300°C) showed similar PL intensity as that of commercially available, bulk Y2O3:Eu3+ (5 μm particle size). Eu doping stabilized the monoclinic Y2O3 and shifted the monoclinic to cubic transition towards higher temperatures.  相似文献   

20.
Y2O3 nanoparticles doped with different concentrations of Er3+ were prepared by the co-precipitation method. X-ray diffraction and transmission electron microscopy results show that Er3+ dissolves completely in the Y2O3 cubic phase. The Er3+:Y2O3 nanoparticles are homogeneous in size and nearly spherical, and the average diameter of the particles after being calcined at 1,000 degrees C for 2 h is in the range of 40-60 nm. When Er3+:Y2O3 nanoparticles are excited under a 980 nm diode laser, there are two main emission bands: green emission centered at 562 nm corresponding to the 4S3/2/2H11/2 --> 4115/2 radiative transitions and red emission centered at 660 nm corresponding to the 4F9/2 --> 4I15/2 radiative transitions. By changing the doping concentration of Er3+ ions, the up-conversion luminescence can be gradually tuned from green to red.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号