首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the effect of incorporation of M2+ species, i.e. Co2+, Mn2+ and Ni2+, into the magnetite structure to increase the reactivity towards H2O2 reactions was investigated. The following magnetites Fe3-xMnxO4, Fe3-xCoxO4 and Fe3-xNixO4 and the iron oxides Fe3O4, gamma-Fe2O3 and alpha-Fe2O3 were prepared and characterized by M?ssbauer spectroscopy, XRD, BET surface area, magnetization and chemical analyses. The obtained results showed that the M2+ species at the octahedral site in the magnetite strongly affects the reactivity towards H2O2, i.e. (i) the peroxide decomposition to O2 and (ii) the oxidation of organic molecules, such as the dye methylene blue and chlorobenzene in aqueous medium. Experiments with maghemite, gamma-Fe2O3 and hematite, alpha-Fe2O3, showed very low activities compared to Fe3O4, suggesting that the presence of Fe2+ in the oxide plays an important role for the activation of H2O2. The presence of Co or Mn in the magnetite structure produced a remarkable increase in the reactivity, whereas Ni inhibited the H2O2 reactions. The obtained results suggest a surface initiated reaction involving Msurf2+ (Fe, Co or Mn), producing HO radicals, which can lead to two competitive reactions, i.e. the decomposition of H2O2 or the oxidation of organics present in the aqueous medium. The unique effect of Co and Mn is discussed in terms of the thermodynamically favorable Cosurf3+ and Mnsurf3+ reduction by Femagnetite2+ regenerating the active species M2+.  相似文献   

2.
This study investigated the decolorization efficiency of C.I. Reactive Red 2 (RR2) in O3, O3/H2O2, O3/Fe3+, O3/H2O2/Fe3+, UV/O3, UV/O3/Fe3+, UV/O3/H2O2 and UV/O3/H2O2/Fe3+ systems at various pHs. The effective energy consumption constants and the electrical energy per order of pollutant removal (EE/O) were also determined. The experimental results indicated that the energy efficiency was highest at [H2O2]0=1000mg/l and [Fe3+]0=25mg/l. Accordingly, the H2O2 and Fe3+ doses in the hybrid ozone- and UV/ozone-based systems were controlled at these values. This work suggests that the dominant reactant in O3, O3/Fe3+ and O3/H2O2 systems was O3 and that in the O3/H2O2/Fe3+ system was H2O2/Fe3+. The experimental results revealed that the combinations of Fe3+ or H2O2/Fe3+ with O3 at pH 4 and of H2O2 or H2O2/Fe3+ with UV/O3 at pH 4 or 7 yielded a higher decolorization rate than O3 and UV/O3, respectively. At pH 4, the EE/O results demonstrated that the UV/O3/H2O2/Fe3+ system reduced 85% of the energy consumption compared with the UV/O3 system. Moreover, the O3/H2O2/Fe3+ system reduced 62% of the energy consumption compared with the O3 system. At pH 7, the EE/O results revealed that the UV/O3/H2O2/Fe3+ system consumed half the energy of the UV/O3 system.  相似文献   

3.
We report on the structural and magnetic properties of nanoparticles of NiGa2O4 and 5 at.% M doped (M = Mn2+, Cu2+, Co2+, Fe3+ and Tb3+) at Ga site of NiGa2O4, synthesized by gel-combustion method. The particle size, as investigated by X-ray diffraction and transmission electron microscopy, could be fine tuned by a controlled annealing process. Weak ferromagnetism becomes significant, when the particles are in the nano regime (5-7 nm). The magnetization becomes insignificant at larger particle size ( 150 nm). Cu2+ and Tb3+ doped NiGa2O4 nanoparticles showed relatively large room temperature ferromagnetism compared to other doped (Fe, Mn and Co) and undoped NiGa2O4 samples. The weak ferromagnetism observed in the nanoparticles of NiGa2O4, which is antiferromagnetic in the bulk, is due to the surface disordered states with uncompensated spins.  相似文献   

4.
采用热法合成磁性Fe3O4纳米颗粒,通过精细调控实验条件能对其形状和大小进行有效控制。采用X射线衍射仪、透射电镜、振动样品磁强计等对Fe3O4纳米颗粒的成分、形貌及磁性等进行了表征测试。结果表明,Fe3O4纳米颗粒的饱和磁化强度为62.5emu/g。最后探讨了Fe3O4纳米颗粒的合成机理。  相似文献   

5.
We present a simple and efficient method for the fabrication of magnetic Fe(2)MO(4) (M:Fe and Mn) activated carbons (Fe(2)MO(4)/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe(2)MnO(4)/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe(3)O(4)/AC-H. The effect of operational parameters (pH, catalyst loading H(2)O(2) dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.  相似文献   

6.
Spectroelectrochemical sensing a metal in two different oxidation states, both of which are weakly absorbing in the visible wavelength range, was demonstrated with ferrous and ferric ion. The sensor consisted of an indium tin oxide optically transparent electrode (ITO OTE) coated with a thin film of Nafion preloaded with the ligand 2,2'-bipyridine (bipy). Fe2+ in the sample partitioned into the film where it reacted with bipy to form Fe(bipy)3(2+), which absorbs strongly at 520 nm. The change in absorbance (DeltaA) at 520 nm associated with the accumulation of Fe(bipy)3(2+) complex in the film was measured by attenuated total reflectance spectroscopy and was proportional to the concentration of Fe2+ in the sample. Iron in the Fe3+ form can also be determined, but it has a more complex coordination chemistry involving formation of [Fe2(bipy)4O(H2O)2]4+ as well as Fe(bipy)3(3+) in the film. Fe3+ was detected indirectly by reducing the nonabsorbing Fe3+-bipy complexes that accumulated in the film to absorbing Fe(bipy)3(2+) and monitoring DeltaA at 520 nm. The effects of film thickness and ligand concentration in the film on sensor sensitivity and response time for Fe2+ were evaluated. Detection limits of 0.6 x 10(-6) M for Fe2+ and 2 x 10(-6) M for Fe3+ were obtained with 300 nm thick films after 30 min of exposure to a quiescent sample. Careful manipulation of the potential applied with simultaneous optical detection enables Fe2+ to be distinguished from Fe3+, which is the first step in developing a sensor for speciating the two oxidation states in a mixture.  相似文献   

7.
Lutetium oxide (Lu2O3) nanocrystals doped with 2%Yb3+, 0.5%Tm3+, and various doping concentrations of Li+ (0, 3, 5, 7, 10, 12, and 15 mol%) were prepared by the sol-gel method. The dependence on different doping concentrations of Li+ ions of the structure, morphology, and the upconversion emission intensity of the Lu2O3:2%Yb3+, 0.5%Tm3+ nanocrystals was investigated. The obtained Lu2O3 nanocrystals were systematically characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier transformed infrared (FT-IR) spectra, Raman spectra, and upconversion spectra measurements. It was found that all the nanocrystals can be readily indexed to pure cubic phase of Lu2O3, indicating good crystallinity. The experimental results show that Li+ doping in Lu2O3:2%Yb3+, 0.5%Tm3+ nanocrystals can greatly enhance the upconversion emission intensity. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the 1G4 --> 3H6 and 1G4 --> 3F4 transitions of Tm3+ ions, respectively. An simple analysis based on steady-state rate equations and a power-dependent study both indicate that the 1G4 levels can be populated by three-step energy transfer (ET) processes. The enhancement of the upconversion luminescence was suggested to be the consequence of the modification of the local field symmetry around the Tm3+ ion, reduced number of OH- groups, and the enlarged nanocrystal size induced by the Li+ ions.  相似文献   

8.
王志  巴德纯  蔺增  曹培江 《真空》2004,41(4):67-70
应用电子回旋共振微波等离子体化学气相沉积方法(ECR-CVD)进行了一维纳米材料的制备.以Fe3O4纳米粒子为催化剂,采用不同的气源,在多孔硅基底上制备出了碳纳米管、掺硼碳纳米管以及异质结构的纳米管.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和 X射线光电子谱(XPS)对样品的形貌、结构及组分进行表征.  相似文献   

9.
The effect of temperature on the oxidation of Fe2+ in the gamma radiolysis of acidic ferrous sulfate solutions has been modelled using the stochastic IRT method, incorporating simulated electron track structures. There is an 11% increase in the Fe3+ yield in aerated 0.4 M H2SO4 solution on going from 298 to 573 K (25 to 300 degrees C). The H2 yield in aerated solution increases about 24% from 0.41 at 298 K to 0.51 at 573 K. In the absence of oxygen, the increase in the yields of both Fe3+ and H2 is about 12%. Calculated yields are consistent with available experimental data at room, and elevated temperatures. Simulations for heavy water (D2O) show similar temperature effects to those found for ferrous sulfate solutions in light water (H2O).  相似文献   

10.
直接共沉淀法制备掺杂α-Fe_2O_3及其气敏性能的初步研究   总被引:3,自引:0,他引:3  
采用直接共沉淀法制备(掺杂)α-Fe2O3粉体并对其气敏性能进行了初步研究。采用正交实验法将各实验参数(反应物Fe3+浓度、Sn4+/Fe3+摩尔比、反应液pH值和烧结温度)有规律组合,用直接共沉淀法制备出一系列刚玉型结构的(掺杂)α-Fe2O3粉体,并用厚膜工艺将粉体涂在云母基片上制成了气敏元件。通过对粉体的XRD测试与分析发现,部分Sn4+以类质同象方式进入到α-Fe2O3晶格中,代替了Fe3+,改变了α-Fe2O3的晶胞参数;通过测试元件在不同温度下对甲烷的气敏性能,结果表明,掺杂提高了α-Fe2O3的气敏性,且得到了制备(掺杂)α-Fe2O3粉体的最佳参数。  相似文献   

11.
CO2 is a major component of the greenhouse gases, which causes the global warming. To reduce CO2 gas, high activity nanosized Ni+2 substituted Fe2TiO5 samples were synthesized by conventional ceramic method. The effect of the composition of the synthesized ferrite on the H2-reduction and CO2-catalytic decomposition was investigated. Fe2TiO5 (iron titanate) phase that has a nanocrystallite size of -80 nm is formed as a result of heating Fe2O3 and TiO2 while the addition of NiO leads to the formation of new phases (-80 nm) NiTiO3 and NiFe2O4, but the mixed solid of NiO and Fe2O3 results in the formation of NiFe2O4 only. Samples with Ni^+2=0 shows the lowest reduction extent (20%); as the extent of Ni+2 increases, the extent of reduction increases. The increase in the reduction percent is attributed to the presence of NiTiO3 and NiFe2O4 phases, which are more reducible phases than Fe2TiO5. The CO2 decomposition reactions were monitored by thermogravimetric analysis (TGA) experiments. The oxidation of the H2-reduced Ni+2 substituted Fe2TiO5 at 500℃ was investigated. As Ni^+2 increases, the rate of reoxidation increases. Samples with the highest reduction extents gave the highest reoxidation extent, which is attributed to the highly porous nature and deficiency in oxygen due to the presence of metallic Fe, Ni and/or FeNi alloy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of oxidized samples show also the presence of carbon in the sample containing Ni+2〉0, which appears in the form of nanotubes (25 nm).  相似文献   

12.
以Zn(NO3)2.6H2O、Ni(NO3)2.6H2O和Fe(NO3)3.9H2O及柠檬酸为原料,采用溶胶-凝胶法制备前驱体,在1 200℃下煅烧3 h合成ZnFe2O4和Ni0.5Zn0.5Fe2O4铁氧体粉体。利用差热分析、X射线衍射、扫描电镜、透射电镜和红外光谱等测试手段对产物进行分析和表征。结果表明:ZnFe2O4和Ni0.5Zn0.5Fe2O4属于立方晶系尖晶石结构,结晶完整,晶粒大小在100 nm左右。在0.2~1.8 GHz的频率下对产品进行了电磁损耗性能测试,发现Ni0.5Zn0.5Fe2O4具有较好的电磁损耗特性。  相似文献   

13.
Li B  Xu Y  Rong G  Jing M  Xie Y 《Nanotechnology》2006,17(10):2560-2566
Uniform V(2)O(5)· xH(2)O nanobelts with high aspect ratios and ultra-long V(2)O(5)· xH(2)O nanorolls with novel scroll-like structures were synthesized on a large scale by a simple hydrothermal growth route using NH(4)VO(3) as the raw material in the presence of different acids at 180?°C for 24?h. Their morphologies were observed by scanning electron microscopy (SEM). X-ray powder diffraction measurement and thermal gravimetric analysis revealed the composition of nanobelts and nanorolls to be V(2)O(5)·0.9H(2)O and V(2)O(5)·0.6H(2)O, respectively. The possible mechanisms of formation of the nanobelts and nanorolls were schematically elucidated based on the layered structure of vanadium pentoxide. In addition, corresponding anhydrous V(2)O(5) nanostructures with better crystallinity were obtained by calcining the precursors of V(2)O(5)·0.9H(2)O nanobelts or V(2)O(5)·0.6H(2)O nanorolls. Furthermore, we have investigated the electrochemical intercalation properties with Li(+) and the photocatalytic activities of the synthesized V(2)O(5)·0.9H(2)O nanobelts, V(2)O(5)·0.6H(2)O nanorolls and their corresponding post-annealing products. It was observed that the morphologies and compositions of the synthesized products had an evident influence on the electrochemical intercalation properties with Li(+) and photocatalytic activities.  相似文献   

14.
Experiments with cooling crystallization of ammonium alum, (NH(4)Al(SO(4))2.12H(2)O), were performed with concentrated multicomponent acidic solutions (originating from underground uranium leaching in Stráz pod Ralskem area, Czech Republic, and containing as the principal components Al3+, NH4+, and SO4(2-) ions) as well as with similar solutions prepared in the laboratory. The yield of NH(4)Al(SO(4))2.12H(2)O crystals increased significantly with the increasing NH4+/Al3+ molar ratio, in accordance with pertinent solubility data. The purifying effect of crystallization was quantified by means of the distribution coefficients, characterizing the uptake of ionic impurities to alum crystals; the tendency of cationic impurities to crystallize with NH(4)Al(SO(4))2.12H(2)O decreased in the following order: K+ > Cr3+ >Na+ approximately Fe3+ >Mg2+ approximately Zn2+ >Fe2+. Additionally, gypsum (CaSO4.2H(2)O) solubilities at 25 degrees C, in mother liquors after NH(4)Al(SO(4))2.12H(2)O crystallization, were determined.  相似文献   

15.
The Fe3O4 films were prepared by in-situ oxidative hydrolysis on chitosan. The structures and characteristics of the prepared Fe3O4 films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM), vibrating sample magnetometry (VSM) and thermogravimetric-differentia thermal analysis (TG-DTA). The results show that, (1) the as-synthesized Fe3O4 films are pure Fe3O4 with cubic inverse spinel structure; (2) the network structured film can be obtained at lower temperature, and the compact particle film at higher temperature; (3) the prepared Fe3O4 films are super-paramagnetic, and the saturation magnetization is improved with increasing the reaction temperature, which is 49.03 emu/g at 80℃; (4) the temperature of phase transformation from Fe3O4 to a-Fe2O3 is about 495℃. Besides, the formation mechanism of Fe3O4 film was also proposed.  相似文献   

16.
In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.  相似文献   

17.
范秀娟  李欣 《新型炭材料》2012,27(2):111-116
通过FeCl2.4H2O和FeCl3.6H2O混合共沉淀,合成平均粒径为6 nm和10 nm的Fe3O4纳米粒子。然后将两种Fe3O4纳米粒子分别与经HNO3氧化处理的多壁碳纳米管(MWCNTs)置于乙醇水溶液(水和乙醇的体积比为1∶1)中,在超声波作用下制备Fe3O4/MWCNT复合材料。用高分辨透射电子显微镜、X-射线光电子能谱、振动样品磁强计、X射线衍射仪、热重分析仪对所制备的Fe3O4/MWCNT复合材料进行表征。结果表明:由6 nm和10 nm Fe3O4纳米粒子所制备的Fe3O4/MWCNT复合材料中,Fe3O4的质量分数分别为26.65%和29.3%,相应的磁饱和强度分别为16.5 emug-1和7.5 emug-1。  相似文献   

18.
多元醇方法制备SnO2包覆碳纳米管复合材料   总被引:1,自引:0,他引:1  
本文采用SnC2O4.2H2O为Sn源和乙二醇(ethylene glycol,EG)为反应介质的多元醇法,制备得到SnO2包覆多壁碳纳米管复合材料(SnO2/MWNTs),其中SnO2是通过EG中溶解的O2氧化Sn2+反应生成的.没有加入MWNTs的情况下,SnC2O4.2H2O的水解反应生成Sn6O4(OH)4,SnC2O4.2H2O与EG之间的聚合反应生成聚羟基乙酸锡,由于水解反应降低了EG中Sn2+的浓度,使得聚羟基乙酸锡产量较低.加入MWNTs后,仅有少量聚羟基乙酸锡生成,且没有Sn6O4(OH)4生成,主要产物为包覆在MWNTs表面的SnO2.这是由于SnO2在EG中的溶解度极低,随O2氧化Sn2+反应进行,EG中的Sn2+浓度不断降低,Sn6O4(OH)4的溶解结晶平衡不断向溶解的方向进行,并最终转化为SnO2.以上对多元醇法制备SnO2/MWNTs合成机理的理解,将有助于采用类似的方法设计合理条件制备得到其他种类金属氧化物包覆碳纳米管的复合材料.  相似文献   

19.
以间苯二酚(R)、甲醛(F)为原料,(R/F)摩尔比为1:2,通过掺杂一定量的硝酸铁或硝酸镍以改善碳气凝胶的结构与性能.用BET,XRD和SEM对碳气凝胶结构进行表征,结果显示样品同传统碳酸钠作为催化剂所得层状形貌结构有明显不同,样品中均含有球状颗粒,且掺杂硝酸铁的样品表面更粗糙,掺杂Ni2+所得碳气凝胶的比表面积高达441.8m2/g.电化学测试结果表明,掺杂Ni2+样品的比电容数值比掺杂Fe3+样品的和传统碳酸钠为催化剂所得碳气凝胶的来得更高,可达227.3F/g,其电化学性能较优.  相似文献   

20.
以金属硝酸盐和尿素为原料,采用燃烧法合成了发青绿光的BaAl2O4:Eu2+,Dy3+长余辉发光材料。采用XRD、SEM、荧光分光光度计等手段对其进行分析表征。研究结果表明:随着燃烧温度升高,燃烧反应加剧,副产物BaCO3的含量减少,BaAl2O4的结晶程度增加,晶粒尺寸增大。Ba-Al2O4:Eu2+,Dy3+的激发光谱和发射光谱峰值分别为310nm和500nm,均呈宽谱带特征,其发光是由Eu2+的4f65d1→4f7跃迁引起,长余辉特性主要基于Dy3+的电子陷阱作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号