首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The electronic structure of laser-deposited P-doped ZnO films was investigated by X-ray absorption near-edge structure spectroscopy (XANES) at the O K-, Zn K-, and Zn L3-edges. While the O K-edge XANES spectrum of the n-type P-doped ZnO demonstrates that the density of unoccupied states, primarily O 2p-P 3sp hybridized states, is significantly high, the O K-edge XANES spectrum of the p-type P-doped ZnO shows a sharp decrease in intensity of the corresponding feature indicating that P replaces O sites in the ZnO lattice, and thereby generating P(O). This produces holes to maintain charge neutrality that are responsible for the p-type behavior of P-doped ZnO. Both the Zn K-, and Zn L3-edge XANES spectra of the P-doped ZnO reveal that Zn plays no significant role in the p-type behavior of ZnO:P.  相似文献   

3.
Uniformity doping, δ-doping and growth-interruption doping to produce gallium nitride (GaN): Mg has been investigated by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). It was demonstrated by electrical, optical, and surface studies that films produced by growth-interruption-Mg-doping produce the best crystal quality, this doping method increasing self-compensation because of the incorporation of additional impurities during the interruption period. Mg-δ-doping employs GaN:Mg/UGaN superlattices valence band edge oscillation to enhance hole concentration leading to significantly reduced p-type resistivity, enhanced hole mobility. This doping method also leads to improved surface morphology.  相似文献   

4.
Wu C  Jie J  Wang L  Yu Y  Peng Q  Zhang X  Cai J  Guo H  Wu D  Jiang Y 《Nanotechnology》2010,21(50):505203
Cl-doped n-type CdS NWs with single-crystal wurtzite structure and [Formula: see text] growth direction were synthesized by using CdCl(2) as the dopant via a thermal co-evaporation method. By controlling the Cl vapor pressure during the growth, the conductivity of the CdS:Cl NWs can be tuned in a wide range of five orders of magnitude. A nano-photodetector based on the CdS:Cl NWs shows high sensitivity to visible light with excellent stability and reproducibility. Significantly, the photoconductivity of the CdS NWs is greatly enhanced by Cl doping and the responsivity and photoconductive gain of the CdS:Cl NWs have substantially increased compared with the undoped CdS NWs. Further study also demonstrates the polarization-dependent photoconductivity of the CdS:Cl NWs. It is expected that the CdS:Cl NWs with tunable optoelectronic properties will have important applications in high-performance nano-optoelectronic devices.  相似文献   

5.
The ordered cocrystallization of nanoparticles into binary superlattices enables close contact of nanocrystals with distinct physical properties, providing a route to 'metamaterials' design. Here we present the first electronic measurements of multicomponent nanocrystal solids composed of PbTe and Ag(2)Te, demonstrating synergistic effects leading to enhanced p-type conductivity. First, syntheses of size-tuneable PbTe and Ag(2)Te nanocrystals are presented, along with deposition as thin-film nanocrystal solids, whose electronic transport properties are characterized. Next, assembly of PbTe and Ag(2)Te nanocrystals into AB binary nanocrystal superlattices is demonstrated. Furthermore, binary composites of varying PbTe-Ag(2)Te stoichiometry (1:1 and 5:1) are prepared and electronically characterized. These composites show strongly enhanced (conductance approximately 100-fold increased in 1:1 composites over the sum of individual conductances of single-component PbTe and Ag(2)Te films) p-type electronic conductivity. This observation, consistent with the role of Ag(2)Te as a p-type dopant in bulk PbTe, demonstrates that nanocrystals can behave as dopants in nanostructured assemblies.  相似文献   

6.
Vanadium-doped calcium germanate nanowires were prepared by a simple hydrothermal method. The samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and solid UV–Vis diffuse reflectance spectrum. The photocatalytic activity of the vanadium-doped calcium germanate nanowires was investigated by the degradation of methylene blue (MB) under solar light irradiation. The results show that the vanadium-doped calcium germanate nanowires are composed of rhombohedral Ca3GeO5 and orthorhombic CaV3O7 phases. The nanowires have the diameter and length of 50–200 nm and several dozens of micrometres, respectively. The band gap of the vanadium-doped calcium germanate nanowires strongly depends on the vanadium doping mass percentage. The absorption spectrum can be broadened to visible light region. The photocatalytic activity of the vanadium-doped calcium germanate nanowires is remarkably improved. Vanadium-doped calcium germanate nanowires with the vanadium doping mass percentage of 10% have the highest photocatalytic activity for MB degradation under solar light irradiation.  相似文献   

7.
Highly crystalline Pt nanoparticles with an average diameter of 5 nm were homogeneously modified on the surfaces of TiO(2) nanowires (Pt-TiO(2) NWs) by a simple hydrothermal and chemical reduction route. Photodegradation of methylene blue (MB) in the presence of Pt-TiO(2) NWs indicates that the photocatalytic activity of TiO(2) NWs can be greatly enhanced by Pt nanoparticle modification. The physical chemistry process and photocatalytic mechanism for Pt-TiO(2) NWs hybrids degrading MB were investigated and analyzed. The Pt attached on TiO(2) nanowires induces formation of a Schottky barrier between TiO(2) and Pt naonoparticles, leading to a fast transport of photogenerated electrons to Pt particles. Furthermore, Pt incoporation on TiO(2) surface can accelerate the transfer of electrons to dissolved oxygen molecules. Besides enhancing the electron-hole separation and charge transfer to dissolved oxygen, Pt may also serve as an effective catalyst in the oxidation of MB. However, a high Pt loading value does not mean a high photocatalytic activity. Higher content loaded Pt nanoparticles can absorb more incident photons which do not contribute to the photocatalytic efficiency. The highest photocatalytic activity for the Pt-TiO(2) nanohybrids on MB can be obtained at 1 at % Pt loading.  相似文献   

8.
The properties of CdSe single crystals grown by static sublimation in an atmosphere of the excess selenium vapor both in the presence of argon and without it have been analyzed. The conditions for obtaining p- and n-type single crystals are given.  相似文献   

9.
10.
We report synthesis windows for growth of millimeter-long ZnTe nanoribbons and ZnSe nanowires using vapor transport. By tuning the local conditions at the growth substrate, high aspect ratio nanostructures can be synthesized. A Cu-ion immersion doping method was applied, producing strongly p-type conduction in ZnTe and ionic conduction in ZnSe. These extreme aspect ratio wide-bandgap semiconductors have great potential for high density nanostructured optoelectronic circuits.   相似文献   

11.
12.
ZnO作为重要的第三代半导体材料在光电领域具有广泛的应用前景因而引起越来越多的关注,ZnO薄膜的p型掺杂是实现ZnO基光电器件的关键,也是ZnO材料的主要研究课题.本文论述了ZnO薄膜P型转变的难点及其解决方法,概述了ZnO薄膜p型掺杂的研究现状,提出了有待进一步研究的问题.  相似文献   

13.
by performing electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and the decay kinetics on photoexcitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism. Large enhancements in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.  相似文献   

14.
It is generally accepted that the interface effect and surface electronic structure of catalysts have vital impact on catalytic properties.Understanding and tai...  相似文献   

15.
几种表面活性剂掺杂对聚苯胺溶解度和电导率的影响   总被引:1,自引:0,他引:1  
用化学氧化法制备了导电聚苯胺,并通过FTIR对其进行了表征,然后用几种表面活性剂的饱和溶液对合成的聚苯胺进行掺杂,通过对比掺杂前后聚苯胺在溶剂中的溶解度和电导率变化,研究各种表面活性剂对聚苯胺溶解性能和导电性能的影响效果.  相似文献   

16.
One-dimensional electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with different molar ratios of Ni to Zn were successfully synthesized using a facile electrospinning technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance (DR) spectroscopy, resonant Raman spectroscopy, photoluminescence (PL) spectroscopy, and surface photovoltage spectroscopy (SPS) were used to characterize the as-synthesized nanofibers. The results indicated that the p-n heterojunctions formed between the cubic structure NiO and hexangular structure ZnO in the NiO/ZnO nanofibers. Furthermore, the photocatalytic activity of the as-electrospun NiO/ZnO nanofibers for the degradation of rhodamine B (RB) was much higher than that of electrospun NiO and ZnO nanofibers, which could be ascribed to the formation of p-n heterojunctions in the NiO/ZnO nanofibers. In particular, the p-type NiO/n-type ZnO heterojunction nanofibers with the original Ni/Zn molar ratio of 1 exhibited the best catalytic activity, which might be attributed to their high separation efficiency of photogenerated electrons and holes. Notably, the electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions could be easily recycled without a decrease of the photocatalytic activity due to their one-dimensional nanostructural property.  相似文献   

17.
This paper investigates the influence of magnetic field-assisted filler alignment technology on the morphology and the thermal conductivity of magnetite-filled epoxy composites. A magnetic field was applied during the solidification of the composite in order to change the position of the filler and its distribution in the polymer matrix. It is shown that the applied procedure leads to the filler being oriented along the direction of the magnetic field, and as a result, the thermal conductivity is improved by up to 120 % compared to a composite with randomly oriented filler obtained without the assistance of a magnetic field. This positive effect is caused by the appearance of conductive paths at a much lower content of the filler when the composite solidification is assisted by a magnetic field, relative to an equivalent isotropic sample. These morphological changes were confirmed by microscopic and X-ray microtomography imaging. The temperature dependences of thermal conductivity were also investigated over a broad temperature range for a magnetite-filled epoxy composite sample and compared to the bulk magnetite reference, showing that thermal behaviour of the magnetite-filled composite is stable, which is a promising result when considering the future application of the technology.  相似文献   

18.
19.
We report that Sb-decorated head-to-head (H-H) basal plane inversion domain boundaries (b-IDBs) lead to stable p-type conduction in Sb-doped ZnO nanowires (NWs) due to Sb and O codoping. Aberration-corrected Z-contrast scanning transmission electron microscopy shows that all of the Sb in the NWs is incorporated into H-H b-IDBs just under the (0001) NW growth surfaces and the (0001) bottom facets of interior voids. Density functional theory calculations show that the extra basal plane of O per H-H b-IDB makes them electron acceptors. NWs containing these defects exhibited stable p-type behavior in a single NW FET over 18 months. This new mechanism for p-type conduction in ZnO offers the potential of ZnO NW based p-n homojunction devices.  相似文献   

20.
Thermal conductivity of thin silicon nanowires (1.4-8.3 nm) including the realistic crystalline structures and surface reconstruction effects is investigated using direct molecular dynamics simulations with Stillinger-Weber potential for Si-Si interactions. Thermal conductivity as a function of decreasing nanowire diameter shows an expected decrease due to increased surface scattering effects. However, at very small diameter (<1.5 nm), an increase in the thermal conductivity is observed, which is explained by the phonon confinement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号