首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据超高水材料充填的一般工艺过程,将系统划分为浆体制备、浆体输送、浆体混合及充填4个子系统;结合应用领域,提出了大流量系统和小流量系统的概念;对于4个子系统,结合应用目的和流量大小分别给出了设计时需要重点考虑的因素;最后结合典型工程实践,证实了各类系统的可用性.  相似文献   

2.
 为了解放老城区建下压煤,城郊煤矿引进超高水材料充填开采技术,在C2401工作面实施充填开采试验。根据井下实际条件,设计出合理的充填系统,系统生产能力可达280m3/h。经过多次充填实验,结果表明:充填系统操作简便,生产能力大,上料、制浆、输送系统间配合正常,能够实现浆液的连续生产、输送;超高水材料浆液流动性好,适合长距离管路输送,且充后管路易处理;超高水材料充填开采技术是一种新型先进的充填技术,设备初期投资较低,机械化程度高。  相似文献   

3.
针对超高水材料性能差、充填体密实程度低、充填工艺系统复杂等问题,以田庄煤矿超高水材料充填开采为工程背景,研究了不同外加剂掺量对超高水材料的影响,分析了超高水材料蠕变性能,改进了充填系统和工艺,并开展了工业性试验和效果分析。结果表明:随AA外加剂掺量增加,浆液流动性能变差,泌水率降低,单轴抗压强度逐渐增加,28d强度最大可达0.90 MPa;在6.5 MPa压力作用下封闭的超高水材料应变仅为6.02×10-3,超高水材料可视为不可压缩体;充填工艺系统简洁、高效、稳定,实现了精准自动化操作和半连续制浆、连续放浆的工艺,满足了工作面的快速回采和充填要求;超高水材料性能好、充填体密实度高、接顶充分,达到了显著的地表沉降控制效果,实现了煤炭资源的绿色开采。  相似文献   

4.
 针对邯郸矿业集团各矿“三下”压煤量大、煤炭资源采出率低的现状,在陶一矿进行了超高水材料充填开采技术研究与试验。在该技术中,选用超高水材料构筑采空区充填体,发明了与该材料性能配套的充填方法,并研制了大流量制浆充填工艺系统。结果表明:应用该技术可以有效地控制采空区上覆岩层的活动和地表的沉陷,解放“三下”压煤,延长矿井服务年限,产生极大的经济和社会效益。  相似文献   

5.
为了提高超高水材料充填工艺的充填效率,优化设计了超高水材料制浆系统,并在店坪煤矿某工作面展开工程实践应用.结果表明,优化后的制浆系统能实现上料、输水及内外循环搅拌功能的自动化.通过监测工作面顺槽顶板下沉量可知,随着超高水材料充填体强度增长,顶板下沉速率逐渐降低,最终下沉量仅为 150.5 mm.  相似文献   

6.
超高水材料开放式充填开采研究   总被引:11,自引:0,他引:11  
针对我国建筑物下压煤充填开采技术在实际应用中存在的不足,本文通过对超高水材料基本性能的研究,提出进行采空区开放式充填开采,这可使具有高流动性的超高水材料浆液在岩层活动期内自行流入煤层开采后所形成的"采空"空间并在可控时间内胶结、凝聚,凝固后的充填体与垮矸以及围岩形成一完整的结构体来控制上覆岩层活动,从而达到有效减缓地面沉降的目的.研究结果表明:超高水材料是性能良好的采空区充填材料;超高水材料开放式充填开采技术是解放建筑物下压煤的一种先进的方法,是符合绿色开采方向的成果.  相似文献   

7.
8.
超高水材料是一种水体积可达95%~97%,水灰比接近11∶1的采空区充填材料。结合超高水材料的基本性能,针对近水平煤层充填开采的难点,提出了阻隔式充填方法,通过对地表移动变形的观测表明,充填对控制地表下沉产生了决定性作用。该充填方式成功实施说明:超高水材料是性能良好的采空区充填材料;超高水材料阻隔式填开采技术是一种适合于近水平煤层的充填方法。  相似文献   

9.
为解决超高水材料在现场施工过程中易出现浆液泌水、甚至不凝固影响充填体强度等问题,进行优化材料配比试验,并在此基础上进行泌水率测试和不同搅拌工艺试验,以提高现场充填效果。试验结果表明:B料中石膏∶石灰比例为4∶1时,超高水材料的抗压强度最大;搅拌工艺对材料泌水率存在较大影响,合理的增加混合浆液搅拌时间能有效减少泌水率,进而减少添加剂掺量、减少成本。将改善后的材料配比及充填工艺应用于田庄煤矿薄煤层充填开采工作面,通过现场取样测试充填体强度和监测得到的实时顶底板移近量数据,充填体强度高于实验室强度,顶底板移近量仅为96 mm,取得了良好的充填效果。  相似文献   

10.
超高水材料充填即在水中添加超高水材料,配制成两种以水为主要成分的、具有高流动性的浆体(水含量95%以上),填入采空区控制顶板下沉.充填体是一种不可逆的化学反应生成的产物(钙矾石),类似于石膏的生成,相当于重新生成一层岩层。  相似文献   

11.
长期以来,工作面过空巷是煤矿开采中难以解决的问题.传统的空巷支护方式不能有效地对顶板和煤壁提供足够的阻力或阻止围岩破坏范围的扩大.本文在分析工作面空巷围岩活动规律和超高水材料性能的基础上,论证了超高水材料充填空巷的可行性,并确定了充填体的力学参数和充填工艺.现场试验证明,采用超高水材料充填空巷是一种安全、经济、高效的方法,较传统空巷支护方法具有较大的优势.  相似文献   

12.
针对矿井资源枯竭实际,采用超高水充填材料进行综采机械化包式充填工艺开采技术,实现了村庄建筑物下安全开采,提高了资源回收率,延长了矿井服务年限。  相似文献   

13.
超高水材料袋式充填开采研究   总被引:7,自引:0,他引:7  
为了解放建筑物下压煤问题,采用新型的超高水材料作为采空区充填物,水体积和水灰比分别可达97%和11∶1.结合超高水材料的基本性能,提出进行采空区袋式充填开采.该技术将超高水材料混合浆液充入预先在采空区架设好的充填袋内,凝固后的充填体控制上覆岩层活动,以达到有效减缓地面沉降的目的.该技术在陶一煤矿充填试验面的成功运用说明:在井下潮湿、低温、封闭的环境中,超高水材料是一种性能良好的采空区充填材料;超高水材料袋式充填开采技术是解放建筑物下压煤的一种先进的煤矿绿色开采方法,具有充填工艺简单,初期投资低,机械化程度高,实际应用与操作方便,对煤矿地质条件及采煤工艺适应性强等显著优点.  相似文献   

14.
基于超高水充填材料的性质,进行了超高水材料充填开采技术研究。该技术包含开放式、全包式、混合式等采空区充填方法,其充填工艺系统由材料储运、浆液制备、浆液输送和混合等4部分组成,并在多个矿井进行了应用。结果表明:超高水材料具有含水量高(水体积分数95%~97%)、凝固速度快(初凝8~90min)、早期强度高、固结体不可压缩、承载性能好、材料强度和凝固时间可调控等优良性能,是一种良好的采空区充填材料。该充填工艺系统初期投资低、操作简单、自动化程度高、管路磨损小。充填开采后,采空区充填率均在85%以上,采场矿压显现程度明显降低,地表建筑物破坏等级控制在国家规定的C级破坏范围内。  相似文献   

15.
超高水材料液压支架后挂袋充填技术   总被引:1,自引:0,他引:1  
超高水材料是一种新型绿色环保的材料,以该材料为基础的充填开采技术能够很好的解决建筑物下压煤的问题。介绍了超高水材料液压架后挂包充填开采技术实施过程,以陶一煤矿充2工作面为例介绍了相关的采煤工艺与充填工艺,并对影响充填效果的因素进行了分析。工程实践表明:超高水材料充填工作面矿压显现不明显,凝结后的充填体可以有效的控制采空区顶板,限制地表下沉。  相似文献   

16.
针对建筑物下3603超高水材料充填开采工作面,经在采空区内布置顶板变形仪和压力传感器,对充填体进行监测研究,得出超高水充填体在工作面中部压缩变形量和应力比端部高;充填体压缩变形量及应力随工作面的向前推进而增加,且在初期总体上均呈线性关系,达一定距离后,逐渐趋于稳定;超高水充填体能有效控制顶板下沉,减缓上覆岩层向下移动,能对地表变形起到很好的控制作用。  相似文献   

17.
 针对田庄煤矿建筑物下压煤给矿山的安全开采和可持续化发展带来巨大的影响。本文采用安装简单、自动化程度较高的充填系统,充分利用矿井工业废水充填采空区,实施结果表明该技术能够保证地表变形和建筑物损坏在可控范围内,能够实现安全高效开采,具有显著的经济效益和社会效益。  相似文献   

18.
田庄煤矿为近水平薄煤层开采矿井,煤层倾角较小并且工作面内高低起伏变化较大,每次充填后工作面采空区空顶面积仍然很大,更为严重的是,很容易造成顶板大面积垮落,影响充填效果,给矿井的安全生产带来巨大的影响。自引进超高水材料充填技术以来,不断进行工艺创新,实现了薄煤层小倾角超高水充填开采。本文主要介绍薄煤层小倾角超高水材料充填全封式挡浆的成功经验。  相似文献   

19.
冀中能源邯郸矿业集团陶一煤矿对村庄下压煤采用充填开采工艺采煤.根据矿井开采条件,利用超高水材料的优越性能进行了袋式充填开采、开放式充填开采工艺的研究.建立了地面充填站,采用自流技术,使得充填能力达到400 m3/h,提升了采充效率.通过对工作面矿压、地表变形监测,表明该工艺可以缓解矿压显现程度,极大减少地表变形.  相似文献   

20.
为了解决邢东矿村庄压滞煤炭资源开采的问题,提出了适用于大埋深、大采高等复杂地质条件下的综合机械化超高水材料充填开采技术,阐明其技术特点,并介绍了研制的分体式充填液压支架、超高水材料充填系统和采煤与充填工艺.现场监测结果表明:1126大采高综采工作面开采过程中,支架后柱工作阻力高于前柱工作阻力,顶板无明显来压现象;地表变形量较小,最大变形量未超过2cm,地表变形控制在Ⅰ级形变以内.该技术有效解决了邢东矿可采资源紧张、村庄下压煤回采的技术难题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号