The growing demand for portable electronic devices means that lightweight power sources are increasingly sought after. Electric double layer capacitors (EDLCs) are promising candidates for use in lightweight power sources due to their high power densities and outstanding charge/discharge cycling stabilities. Three-dimensional (3D) self-supporting carbon-based materials have been extensively studied for use in lightweight EDLCs. Yet, a major challenge for 3D carbon electrodes is the limited ion diffusion rate in their internal spaces. To address this limitation, hierarchically porous 3D structures that provide additional channels for internal ion diffusion have been proposed. Herein, we report a new chemical method for the synthesis of an ultralight (9.92 mg/cm3) 3D porous carbon foam (PCF) involving carbonization of a glutaraldehydecross-linked chitosan aerogel in the presence of potassium carbonate. Electron microscopy images reveal that the carbon foam is an interconnected network of carbon sheets containing uniformly dispersed macropores. In addition, Brunauer–Emmett–Teller measurements confirm the hierarchically porous structure. Electrochemical data show that the PCF electrode can achieve an outstanding gravimetric capacitance of 246.5 F/g at a current density of 0.5 A/g, and a remarkable capacity retention of 67.5% was observed when the current density was increased from 0.5 to 100 A/g. A quasi-solid-state symmetric supercapacitor was fabricated via assembly of two pieces of the new PCF and was found to deliver an ultra-high power density of 25 kW/kg at an energy density of 2.8 Wh/kg. This study demonstrates the synthesis of an ultralight and hierarchically porous carbon foam with high capacitive performance.
Developing low-cost and long-cycling-life aqueous zinc (Zn) ion capacitors (AZICs) for large-scale electrochemical energy storage still faces the challenges of dendritic Zn deposition and interfacial side reactions. Here, an interface engineering strategy utilizing a dibenzenesulfonimide (BBI) additive is employed to enhance the stability of the Zn metal anode/electrolyte interface. The first-principles calculation results demonstrate that BBI anions can be chemically adsorbed on Zn metal. Meanwhile, the experimental results confirm that the BBI-Zn interfacial layer converts the original water-richelectric double layer (EDL) into a water-poor EDL, effectively inhibiting the water related parasitic reaction at the electrode/electrolyte interface. In addition, the BBI-Zn interfacial layer introduces an additional Zn ions (Zn2+) migration energy barrier, increasing the Zn2+ de-solvation activation energy, consequently raising the Zn2+ nucleation overpotential, and thus achieving the compact and uniform Zn deposition behavior. Furthermore, the solid electrolyte interphase (SEI) layer derived from the BBI-Zn interfacial layer during cycling can further maintain the interfacial stability of the Zn anode. Owing to the above favorable features, the assembled AZIC exhibits an ultra-long cycling life of over 300 000 cycles based on the additive engineering strategy, which shows application prospects in high-performance AZICs. 相似文献