首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cross-talk between oocyte and somatic cells plays a crucial role in the regulation of follicular development and oocyte maturation. As a result, granulosa cell apoptosis causes follicular atresia. In this study, sheep granulosa cells were cultured under thermal stress to induce apoptosis, and melatonin (MT) was examined to evaluate its potential effects on heat-induced granulosa cell injury. The results demonstrated that the Colony Forming Efficiency (CFE) of granulosa cells was significantly decreased (heat 19.70% ± 1.29% vs. control 26.96% ± 1.81%, p < 0.05) and the apoptosis rate was significantly increased (heat 56.16% ± 13.95%vs. control 22.80% ± 12.16%, p < 0.05) in granulosa cells with thermal stress compared with the control group. Melatonin (10−7 M) remarkably reduced the negative effects caused by thermal stress in the granulosa cells. This reduction was indicated by the improved CFE and decreased apoptotic rate of these cells. The beneficial effects of melatonin on thermal stressed granulosa cells were not inhibited by its membrane receptor antagonist luzindole. A mechanistic exploration indicated that melatonin (10−7 M) down-regulated p53 and up-regulated Bcl-2 and LHR gene expression of granulosa cells under thermal stress. This study provides evidence for the molecular mechanisms of the protective effects of melatonin on granulosa cells during thermal stress.  相似文献   

2.
Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.  相似文献   

3.
4.
Melatonin has been identified in a variety of crustacean species, but its function is not as well understood as in vertebrates. The present study investigates whether melatonin has an effect on crustacean hyperglycemic hormone (CHH) gene expression, oxygen consumption (VO2) and circulating glucose and lactate levels, in response to different dissolved-oxygen concentrations, in the crab Neohelice granulata, as well as whether these possible effects are eyestalk- or receptor-dependent. Melatonin decreased CHH expression in crabs exposed for 45 min to 6 (2, 200 or 20,000 pmol·crab−1) or 2 mgO2·L−1 (200 pmol·crab−1). Since luzindole (200 nmol·crab−1) did not significantly (p > 0.05) alter the melatonin effect, its action does not seem to be mediated by vertebrate-typical MT1 and MT2 receptors. Melatonin (200 pmol·crab−1) increased the levels of glucose and lactate in crabs exposed to 6 mgO2·L−1, and luzindole (200 nmol·crab−1) decreased this effect, indicating that melatonin receptors are involved in hyperglycemia and lactemia. Melatonin showed no effect on VO2. Interestingly, in vitro incubation of eyestalk ganglia for 45 min at 0.7 mgO2·L−1 significantly (p < 0.05) increased melatonin production in this organ. In addition, injections of melatonin significantly increased the levels of circulating melatonin in crabs exposed for 45 min to 6 (200 or 20,000 pmol·crab−1), 2 (200 and 20,000 pmol·crab−1) and 0.7 (200 or 20,000 pmol·crab−1) mgO2·L−1. Therefore, melatonin seems to have an effect on the metabolism of N. granulata. This molecule inhibited the gene expression of CHH and caused an eyestalk- and receptor-dependent hyperglycemia, which suggests that melatonin may have a signaling role in metabolic regulation in this crab.  相似文献   

5.
6.
In this study, the effects of melatonin (MT) on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and PRL) were investigated in female sika deer. Different doses (40 or 80 mg/animal) of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1 ± 2.04 ng/mL) at the point of insemination, compared with the baseline levels (4.98 ± 0.07 ng/mL) in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p < 0.05). The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p > 0.05), which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed.  相似文献   

7.
Agomelatine is a naphthalenic analogue of melatonin that is in clinical use for the treatment of major depressive disorders. Interestingly, while agomelatine exhibits potent affinity for melatonin receptors, it binds with only moderate affinity to the serotonin 5‐HT2C receptor. Optimization of agomelatine toward this target could further potentiate its clinical efficacy. To explore this hypothesis and to access derivatives in which a key point of agomelatine metabolism is blocked, a series of naphthalenic derivatives was designed and synthesized as novel analogues of agomelatine. Most of the prepared compounds exhibited good binding affinity at the melatonin MT1 and MT2 receptor subtypes. Two compounds, an acetamide and an acrylamide derivative, exhibited good binding affinities at both the human melatonin (MT) receptors and the serotonin 5‐HT2C receptor subtype, with pKi values of 7.96 and 7.95 against MT1, 7.86 and 8.68 against MT2, and 6.64 and 6.44 against 5‐HT2C, respectively.  相似文献   

8.
Two clinical forms of functional dyspepsia (FD) are listed in the Rome III criteria: postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS), differing in the recurrence of ailments depending on the diet. Continuous EPS (CEPS) is observed in some EPS patients, also at night, but its cause is still unknown. We showed previously that melatonin (MEL) homeostasis may be associated with FD. In the present work we evaluated selected components of melatonin homeostasis in patients with CEPS. The study included 30 patients with CEPS, 21 women and nine men, aged 21–49 years and 30 control subjects (EPS excluded); organic and mental diseases, as well as Helicobacter pylori infection, were excluded in both groups. The average severity of abdominal pain in the last three months was estimated in a 10-point scale (Visual Analog Scale). The levels of mRNA expression of arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), the main components of MEL homeostasis, were determined in gastric mucosa with real time PCR. The fasting serum level of MEL (at 09:00 a.m.) and circadian urine excretion of 6-sulfatoxymelatonin (6-HMS) were determined with ELISA. AANAT expression in antral mucosa of control subjects was 1.76 ± 0.41, in the gastric body 1.35 ± 0.38, and in the dyspeptic group 1.42 ± 0.38 (p < 0.05) and 0.92 ± 0.55 (p < 0.05), respectively. HIOMT expression in the control was 2.05 ± 0.70 in the antrum and 1.57 ± 0.69 in the body and in the CEPS group, it was: 1.51 ± 0.57 (p < 0.05) and 0.74 ± 0.31 (p < 0.001), respectively. MEL concentration (pg/mL) was 9.41 ± 3.09 in the control group and 5.62 ± 1.34 (p < 0.01) in the CEPS group. Urinary 6-HMS excretion (μg/24 h) was 11.40 ± 4.46 in the controls and 7.68 ± 2.88 (p < 0.05) in the CEPS. Moreover, a negative correlation was found between the tested parameters and severity of epigastric pain. These results indicate that patients with CEPS may display low level of AANAT and HIOMT expression in gastric mucosa, resulting in decreased MEL synthesis.  相似文献   

9.
The enhancement of photosynthesis of tea leaves can increase tea yield. In order to explore the regulation mechanism of exogenous melatonin (MT) on the photosynthetic characteristics of tea plants, tea variety ‘Zhongcha 108’ was used as the experimental material in this study. The effects of different concentrations (0, 0.2, 0.3, 0.4 mM) of melatonin on the chlorophyll (Chl) content, stomatal opening, photosynthetic and fluorescence parameters, antioxidant enzyme activity, and related gene expression of tea plants were detected and analyzed. The results showed that under 0.2-mM MT treatment, chlorophyll (Chl) content, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) improved, accompanied by a decrease in stomata density and increase in stomata area. Zero point two millimolar MT increased Chl fluorescence level and superoxide dismutase (SOD) activity, and reduced hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, indicating that MT alleviated PSII inhibition and improved photochemical efficiency. At the same time, 0.2 mM MT induced the expression of genes involved in photosynthesis and chlorophyll metabolism to varying degrees. The study demonstrated that MT can effectively enhance the photosynthetic capacity of tea plants in a dose-dependent manner. These results may promote a comprehensive understanding of the potential regulatory mechanism of exogenous MT on photosynthesis in tea plants.  相似文献   

10.
Herein we report attempts to optimize the pharmacological properties of 5-(2-hydroxyethoxy)-N-acetyltryptamine (5-HEAT), a melatonin receptor ligand previously described by us. Several 5-substituted and 2,5-disubstituted N-acyltryptamines were synthesized and evaluated in vitro for the human cloned MT(1) and MT(2) receptors. From this series of N-acyltryptamines the 2-bromo derivative (5 c) retains the interesting efficacy profile of 5-HEAT and shows increased melatonin receptor affinities; it represents one of the first examples of a high-affinity MT(1) agonist/MT(2) antagonist. Some other full agonists for both melatonin receptors which exhibit similar or increased affinity relative to that of melatonin were obtained.  相似文献   

11.
Melatonin exerts its actions through membrane MT1/MT2 melatonin receptors, which belong to the super family of G-protein-coupled receptors consisting of the typical seven transmembrane domains. MT1 and MT2 receptors are expressed in various tissues of the body either as single ones or together. A growing literature suggests that the melatonergic system may be involved in the pathophysiology of mood and anxiety disorders. In fact, some core symptoms of depression show disturbance of the circadian rhythm in their clinical expression, such as diurnal mood and other symptomatic variation, or are closely linked to circadian system functioning, such as sleep-wake cycle alterations. In addition, alterations have been described in the circadian rhythms of several biological markers in depressed patients. Therefore, there is interest in developing antidepressants that have a chronobiotic effect (i.e., treatment of circadian rhythm disorders). As melatonin produces chronobiotic effects, efforts have been aimed at developing agomelatine, an antidepressant with melatonin agonist activity. The present paper reviews the role of the melatonergic system in the pathophysiology of mood and anxiety disorders and the clinical characteristics of agomelatine. Implications of agomelatine in “real world” clinical practice will be also discussed.  相似文献   

12.
13.
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology—for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.  相似文献   

14.
Metallothioneins (MT) are low molecular weight, cysteine-rich proteins maintaining metal ions homeostasis. They play a role in carcinogenesis and may also cause chemoresistance. The aim of the study was to explore the importance of MT serum levels in children suffering from malignant tumours. This prospective study involves examination of 865 samples from 172 patients with malignant tumours treated from 2008 to 2011 at University Hospital Motol. MT serum levels were determined using differential pulse voltammetry–Brdicka reaction. Mean MT level was 2.7 ± 0.5 μM. There was no statistically significant difference between MT levels in different tumours. We also did not find any correlation between MT levels and response to therapy or clinical stages. However, we found a positive correlation between MT levels and age (p = 0.009) and a negative correlation with absolute lymphocyte number (p = 0.001). The fact that patients who had early disease recurrence had lower MT levels during the treatment (complete remission 2.67 vs. recurring 2.34, p = 0.001) seems to be important for clinical practice. Accordingly we believe that there is benefit in further studies of serum MT levels in tumours.  相似文献   

15.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis. Transient Receptor Potential Ankyrin 1 (TRPA1) and Vanilloid 1 (TRPV1) receptors are non-selective cation channels expressed on primary sensory neurons and epithelial and immune cells. TRPV1 mRNA and immunopositivity, as well as TRPA1-like immunoreactivity upregulation, were demonstrated in OSCC, but selectivity problems with the antibodies still raise questions and their functional relevance is unclear. Therefore, here, we investigated TRPA1 and TRPV1 expressions in OSCC and analyzed their functions. TRPA1 and TRPV1 mRNA were determined by RNAscope in situ hybridization and qPCR. Radioactive 45Ca2+ uptake and ATP-based luminescence indicating cell viability were measured in PE/CA-PJ41 cells in response to the TRPA1 agonist allyl-isothiocyanate (AITC) and TRPV1 agonist capsaicin to determine receptor function. Both TRPA1 and TRPV1 mRNA are expressed in the squamous epithelium of the human oral mucosa and in PE/CA-PJ41 cells, and their expressions are significantly upregulated in OSCC compared to healthy mucosa. TRPA1 and TRPV1 activation (100 µM AITC, 100 nM capsaicin) induced 45Ca2+-influx into PE/CA-PJ41 cells. Both AITC (10 nM–5 µM) and capsaicin (100 nM–45 µM) reduced cell viability, reaching significant decrease at 100 nM AITC and 45 µM capsaicin. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the OSCC and confirm the expression of TRPV1 channel. These channels are functionally active and might regulate cancer cell viability.  相似文献   

16.
Melatonin is crucial in reproduction due its antioxidant, hormonal, and paracrine action. Melatonin membrane receptors (MT1/MT2) have been confirmed on spermatozoa from several species, but functionality studies are scarce. To clarify their role in ruminants as reproductive models, bull (Bos taurus, non-seasonal) and red deer (Cervus elaphus, highly seasonal) spermatozoa were analyzed after 4 h of incubation (38 °C, capacitating media) in 10 nM melatonin, MT1/MT2 agonists (phenylmelatonin and 8M-PDOT), and antagonists (luzindole and 4P-PDOT). Motility and functionality (flow cytometry: viability, intracellular calcium, capacitation status, reactive oxygen species (ROS) production, and acrosomal and mitochondrial status) were assessed. In bull, MT1 was related to sperm viability preservation, whereas MT2 could modulate cell functionality to prevent excess ROS produced by the mitochondria; this action could have a role in modulating sperm capacitation. Deer spermatozoa showed resistance to melatonin and receptor activation, possibly because the samples were of epididymal origin and collected at the breeding season’s peak, with high circulating melatonin. However, receptors could be involved in mitochondrial protection. Therefore, melatonin receptors are functional in the spermatozoa from bull and deer, with different activities. These species offer models differing from traditional laboratory experimental animals on the role of melatonin in sperm biology.  相似文献   

17.
Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.  相似文献   

18.
19.
The gilthead seabream larval rearing in continuous light is common in most Mediterranean hatcheries to stimulate larval length growth and increase food consumption. Several studies have shown that continuous light affects larval development and increases the prevalence of skeletal deformities. Melatonin is a crucial pineal neurohormone that displays daily secretion patterns, stimulates cell proliferation and embryonic development in Atlantic salmon and zebrafish, and improves osseointegration in mice and humans. However, no studies have examined the effects of orally supplemented melatonin on skeletal deformities in Sparus aurata larvae. We administered exogenous melatonin to gilthead seabream larvae via enriched rotifers and nauplii of Artemia. Exogenous melatonin induced bone deformities and stimulated parathyroid hormone-related protein-coding gene (PTHrP) mRNA expression. In addition to the melatonin-induced PTHrP high expression level, the recorded non coordinated function of skeletal muscle and bone during growth can be the fountainhead of bone deformities. Both myosin light chain 2 (mlc2) and bone gamma-carboxyglutamate protein-coding gene (bglap) expression levels were significantly affected by melatonin administration in an inverse dose–response manner during the exogenous melatonin administration. This is the first study to report the effect of inducing melatonin bone deformities on Sparus aurata larvae reared under ordinary hatchery conditions.  相似文献   

20.
Melatonin (MT), as a signaling molecule, plays a vital role in regulating leaf senescence in plants. This study aimed to verify the antioxidant roles of MT in delaying dark- or age-induced leaf senescence of cucumber plants. The results showed that endogenous MT responds to darkness and overexpression of CsASMT, the key gene of MT synthesis, and delays leaf senescence stimulated by darkness, as manifested by significantly lower malonaldehyde (MDA) and reactive oxygen species (ROS) contents as well as higher activities and gene expression of antioxidant enzymes compared to the control. Moreover, MT suppressed both age- or dark-induced leaf senescence of cucumber, as evidenced by a decrease in senescence-related gene SAG20 and cell-death-related gene PDCD expression and ROS content and an increase in antioxidant capacity and chlorophyll biosynthesis compared with the H2O-treated seedlings. Meanwhile, the suppression of age-induced leaf senescence by melatonin was also reflected by the reduction in abscisic acid (ABA) biosynthesis and signaling pathways as well as the promotion of auxin (IAA) biosynthesis and signaling pathways in cucumber plants in the solar greenhouse. Combining the results of the two separate experiments, we demonstrated that MT acts as a powerful antioxidant to alleviate leaf senescence by activating the antioxidant system and IAA synthesis and signaling while inhibiting ABA synthesis and signaling in cucumber plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号