首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Defatted meals of 10 rapeseed (Brassica napus L.) varieties were investigated for their total phenolic, phenolic acid (free, esterified, and insoluble-bound forms), and tannin contents. The antioxidant capacities (AC) of methanol extracts from samples were assessed using the 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH•), Folin–Ciocalteu method and ferric reducing antioxidant power (FRAP), and β-carotene–linoleic acid tests. In the fraction of free phenolic acids, sinapic, caffeic, ferulic, syringic, gallic, and p-coumaric acids were identified. In the fraction of esterified phenolic acids, sinapine, sinapoyl glucoside, and disinapoyl gentiobiose were identified. After basic hydrolysis, sinapic, ferulic, cinnamic, and 4-hydroxybenzoic acids were identified, and sinapic acid (SA) constituted 98.3% to 99.6% of the total esterified phenolic acids. Eleven components (sinapic, protocatechuic, p-coumaric, syringic, vanillic, gallic, caffeic, ferulic, salicylic, cinnamic, and 4-hydroxybenzoic acids) in the fraction of insoluble-bound phenolic acids were identified. The AC of the samples correlated with the total phenolic content. Overall, the total phenolics showed a better correlation with AC than the individual phenolic compounds. Moreover, SA, sinapoyl glucoside, and disinapoyl gentiobiose showed a highly significant and strong positive correlation with the AC of rapeseed meals, and the derivatives of cinnamic acid showed a higher correlation with AC than the derivatives of benzoic acid. The change in the canolol content in rapeseeds under microwave irradiation is discussed. The correlation of the canolol formed with SA and its derivatives is discussed.  相似文献   

2.
Phenolic compounds were extracted from three wild grapevine species: Vitis californica, V. riparia and V. amurensis seeds using 80% methanol or 80% acetone. The total content of phenolic compounds was determined utilizing the Folin-Ciocalteu’s phenol reagent while the content of tannins was assayed with the vanillin and BSA precipitation methods. Additionally, the DPPH free radical scavenging activity and the reduction power of the extracts were measured. The RP-HPLC method was applied to identify the phenolic compounds in the extracts, such as phenolic acids and catechins. The seeds contained large amounts of tannins, catechins and gallic acid and observable quantities of p-coumaric acid. The total content of phenolic compounds and tannins was similar in the extracts from V. californica and V. riparia seeds. However, the total content of total phenolic compounds and tannins in the extracts from V. californica and V. riperia seeds were about two-fold higher than that in the extracts from V. amurensis seeds. Extracts from seeds of the American species (V. californica and V. riparia) contained similarly high concentrations of tannins, whereas extracts from seeds of V. amurensis had approximately half that amount of these compounds. The content of catechin and epicatechin was similar in all extracts. The highest DPPH anti-radical scavenging activity was observed in the acetonic and methanolic extracts of V. californica and V. riparia seeds— while the acetonic extract from the V. californica seeds was the strongest reducing agent.  相似文献   

3.
Mango (Mangifera indica L.), also called “the king of fruits”, is one of the most popular fruits in tropical regions. Pulp and peel samples of mango cultivars were analyzed to estimate total phenolic, total flavonoid and total anthocyanin contents. Phenolic acids, hydrophilic peroxyl radical scavenging capacity (hydro-PSC) and oxygen radical scavenging capacity (ORAC) in vitro were also determined. Total phenolics and flavonoid contents were found maximum in the peel of Xiao Tainang and Da Tainang cultivars, respectively, whereas Xiao Tainang also exhibited significant antioxidant capacity. Noteworthy, concentrations of gallic acid, protocatechuic acid, ferulic acid, chlorogenic acid and caffeic acids at 79.15, 64.33, 33.75, 27.19 and 13.62 mg/100 g fresh weight (FW) were quantified for Da Tainang, Xiao Tainang and of Jidan cultivars, respectively. Comparatively, a higher level of phenolics and significant antioxidant capacity in mango peel indicated that it might be useful as a functional food and value-added ingredient to promote human health.  相似文献   

4.
Reversible sorption of phenolic acids by soils may provide some protection to phenolic acids from microbial degradation. In the absence of microbes, reversible sorption 35 days after addition of 0.5–3 mol/g of ferulic acid or p-coumaric acid was 8–14% in Cecil Ap horizon and 31–38% in Cecil Bt, horizon soil materials. The reversibly sorbed/solution ratios (r/s) for ferulic acid or p-coumaric acid ranged from 0.12 to 0.25 in Ap and 0.65 to 0.85 in Bt horizon soil materials. When microbes were introduced, the r/s ratio for both the Ap and Bt horizon soil materials increased over time up to 5 and 2, respectively, thereby indicating a more rapid utilization of solution phenolic acids over reversibly sorbed phenolic acids. The increase in r/s ratio and the overall microbial utilization of ferulic acid and/or p-coumaric acid were much more rapid in Ap than in Bt horizon soil materials. Reversible sorption, however, provided protection of phenolic acids from microbial utilization for only very short periods of time. Differential soil fixation, microbial production of benzoic acids (e.g., vanillic acid and p-hydroxybenzoic acid) from cinnamic acids (e.g., ferulic acid and p-coumaric acid, respectively), and the subsequent differential utilization of cinnamic and benzoic acids by soil microbes indicated that these processes can substantially influence the magnitude and duration of the phytoxicity of individual phenolic acids.  相似文献   

5.
Phenolic compounds have been identified as the most common allelochemicals produced by higher plants. Inhibitions of cinnamic acid, its related phenolic derivatives, and abscisic acid (ABA) on seedling growth and seed germination of lettuce were studied.trans-Cinnamic acid, ando-,m-, andp-coumaric acids inhibited the growth of etiolated seedlings of lettuce at concentrations higher than 10–4 M and seed germination above 10–3 M. Coumarin inhibited seedling growth and seed germination at 10–5 M or above. Chlorogenic acid inhibited seedling growth above 10–4 M, but did not inhibit seed germination at 10–5–5×10–3 M. Low concentrations (below 10–3 M) of caffeic and ferulic acids promoted the elongation of hypocotyls, but higher concentrations (over 10–3 M) inhibited seedling growth and seed germination. These phenolic compounds and abscisic acid had additive inhibitory effects both on seedling growth and seed germination. The inhibition on lettuce was reversed by caffeic and ferulic acids at concentrations lower than 10–3 M except for the inhibition of germination by coumarin. These results suggest that in naturetrans-cinnamic acid,o-, m-, p-coumaric acids, coumarin, and chlorogenic acid inhibit plant growth regardless of their concentration. However, caffeic and ferulic acids can either promote or inhibit plant growth according to their concentration.  相似文献   

6.
The solubility prediction of any compound in supercritical carbon dioxide is obtained using the dense gas formulation to calculate the phase equilibria. To achieve this, the Peng-Robinson equation of state with the Stryjek-Vera modification is used. Then, this is coupled with the Wong-Sandler and Van der Waals mixing rules. The latter was included in order to evaluate the influence of the mixing rules in the calculation of the solubility. Therefore, the obtained results from the model are compared with experimental data reported in literature for ferulic acid, p-coumaric acid and caffeic acid contained in citrus seeds. Good agreement was obtained between the model and the experimental data for the phenolic acids, when the Wong-Sandler mixing rules are used. Also the influence of the multicomponent mixture is considered for the prediction of the solubility of phenolic acids in supercritical carbon dioxide.  相似文献   

7.
The data support the hypothesis that there is a synergistic phytotoxic effect whenp-coumaric and ferulic acids are found together. Equimolar mixtures of both acids showed greater reduction in sorghum seed germination, shoot elongation, and total seedling growth than either phytotoxin caused when alone. Repeated experiments showed mixtures containing 5×10–3 Mp-coumaric and 5×10–3 M ferulic acids reduced germination to 34% of controls after 24 hr and 59% by 48 hr. The same concentration of either phenol-treated seeds alone showed 69 and 92% germination at comparable times. The phytotoxic action of the combination approximated the inhibitory effect on germination of 10–2 M ferulic acid and was a greater reduction than caused by 10–2 Mp-coumaric treatments. Sorghum seedling growth was more sensitive than germination, with an equimolar mixture of 2.5×10–4 Mp-coumaric and 2.5×10–4 M ferulic acids reducing seedling dry weight significantly below weights of seedlings treated separately with 2.5×10–4 Mp-coumaric or ferulic acids. Further dilutions showed a 1.25×10–4 M concentration of either phenol was stimulatory to seedling growth, whereas a mixture of these two produced inhibition.  相似文献   

8.
Soil core (0–2.5 and/or 0–10 cm) samples were taken from wheat no till, wheat-conventional till, and fallow-conventional till soybean cropping systems from July to October of 1989 and extracted with water in an autoclave. The soil extracts were analyzed for seven common phenolic acids (p-coumaric, vanillic,p-hydroxybenzoic, syringic, caffeic, ferulic, and sinapic; in order of importance) by high-performance liquid chromatography. The highest concentration observed was 4 g/g soil forp-coumaric acid. Folin & Ciocalteu's phenol reagent was used to determine total phenolic acid content. Total phenolic acid content of 0- to 2.5-cm core samples was approximately 34% higher than that of the 0- to 10-cm core samples. Phenolic acid content of 0- to 2.5-cm core samples from wheat-no till systems was significantly higher than those from all other cropping systems. Individual phenolic acids and total phenolic acid content of soils were highly correlated. The last two observations were confirmed by principal component analysis. The concentrations were confirmed by principal component analysis, tions of individual phenolic acids extracted from soil samples were related to soil pH, water content of soil samples, total soil carbon, and total soil nitrogen. Indirect evidence suggested that phenolic acids recovered by the water-autoclave procedure used came primarily from bound forms in the soil samples.The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned.  相似文献   

9.
Pyranoanthocyanins are anthocyanin-derived pigments with higher stability to pH and storage. However, their slow formation and scarcity in nature hinder their industrial application. Pyranoanthocyanin formation can be accelerated by selecting anthocyanin substitutions, cofactor concentrations, and temperature. Limited information is available on the impacts of the chemical structure of the cofactor and anthocyanin; therefore, we evaluated their impacts on pyranoanthocyanin formation efficiency under conditions reported as favorable for the reaction. Different cofactors were evaluated including pyruvic acid, acetone, and hydroxycinnamic acids (p-coumaric, caffeic, ferulic, and sinapic acid) by incubating them with anthocyanins in a molar ratio of 1:30 (anthocyanin:cofactor), pH 3.1, and 45 °C. The impact of the anthocyanin aglycone was evaluated by incubating delphinidin, cyanidin, petunidin, or malvidin derivatives with the most efficient cofactor (caffeic acid) under identical conditions. Pigments were identified using UHPLC-PDA and tandem mass spectrometry, and pyranoanthocyanin formation was monitored for up to 72 h. Pyranoanthocyanin yields were the highest with caffeic acid (~17% at 72 h, p < 0.05). When comparing anthocyanins, malvidin-3-O-glycosides yielded twice as many pyranoanthocyanins after 24 h (~20%, p < 0.01) as cyanidin-3-O-glycosides. Petunidin- and delphinidin-3-O-glycosides yielded <2% pyranoanthocyanins. This study demonstrated the importance of anthocyanin and cofactor selection in pyranoanthocyanin production.  相似文献   

10.
Total lipid contents, fatty acid compositions, phenolic profiles and antioxidants activities of seeds from Thapsia garganica, Orlaya maritima, and Retama raetam were investigated. The oil values were more than 26 %, except seeds of R. raetam (ca. 3 %). Unsaturated fatty acids accounted for the majority of the fatty acids (more than 75 %). Oleic and linoleic acid were the predominant fatty acids. Total phenolic compounds (24–104 mg GAE g?1 DR), total flavonoids (4–102 mg QE g?1g DR), total tannins (28–85 mg GAE g?1 DR) and condensed tannins (0.62–131 mg CE g?1 DR) were also determined. The antioxidant activities using different assays were evaluated. The predominant detected classes were the phenolic acids (42–85 %) and the flavonoids (11–48 %). The major phenolic acids were caffeic, trans‐4‐hydroxy‐3‐methoxycinnamic, p‐coumaric, and gallic acid. The predominant flavonoids were quercetin, luteolin, naringin, apigenin, and kaempferol. This study brings attention to the medicinal importance of these species as a source of oil and antioxidant molecules.  相似文献   

11.
Four herbaceous plant species from woodland (clearings),Deschampsia flexuosa, Scrophularia nodosa, Senecio sylvaticus, andChamaenerion angustifolium, were tested for their sensitivity to phenolic acids. Seven commonly occurring phenolic compounds were used in a germination experiment in concentrations ranging from 0.01 to 10 mM, i.e., salicylic,p-hydroxybenzoic, syringic, caffeic, vanillic,p-coumaric, and ferulic acids. Germination was delayed rather than inhibited. Radicle elongation was strongly affected; at lower concentrations stimulatory effects were observed, whereas at high concentrations radicle elongation was severely reduced. Salicylic acid was the most effective phenolic compound, whereas caffeic acid caused no effects. Early growth was studied in more detail in a second experiment withDeschampsia flexuosa andSenecio sylvaticus and the phenolic acids, ferulic and p-coumaric acid. Primary root length, number and length of secondary roots, and dry weight were stimulated at 0.01 mM but were inhibited at 10 mM of both compounds. The results are discussed in view of the allelopathic relations between trees and herbaceous understory vegetation.  相似文献   

12.
Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids and antioxidant capacity. This study was undertaken to investigate the influence of processing on phenolic acids content and antioxidant capacity of corn and the corresponding processed DDGS samples. The five phenolic acids identified in corn and DDGS were vanillic, caffeic, p-coumaric, ferulic, and sinapic acids. Ferulic and p-coumaric acids accounted for about 80% of the total identified and quantified phenolic acids. The phenolic acids profile of DDGS was comparable to that of corn. The content of total phenolic acids per gram basis, in DDGS was 3.40 fold higher and antioxidant capacity was 2.58 fold more than that of corn. These observations suggest that there was little degradation in individual phenolic acids content during dry grind processing. Furthermore, significant variation in measured individual and total phenolic acids, and antioxidant capacity among processing plants existed for both corn and DDGS. Results from this study will be valuable to bioethanol manufacturers and the feed industry.  相似文献   

13.
Accumulation of phenolic compounds (p-coumaric, caffeic, and ferulic acids and p-coumaric acid methyl ester) was followed in susceptible (Mustang) and tolerant (Flamingo) cucumber (Cucumis sativus) cultivars. The objective was to determine whether these compounds played a role in resistance against powdery mildew following a prophylactic treatment with Milsana (leaf extracts from the giant knot weed Reynoutria sachalinensis, polygonaceae). This treatment significantly reduced the incidence of powdery mildew in both cultivars. Phenolic compounds were extracted from leaves. In the hydrolyzed fraction containing phenolic aglycones, levels of p-coumaric, caffeic, and ferulic acids and of p-coumaric acid methyl ester increased in all treatments (with leaf extracts of R. Sachalinensis, powdery mildew, or both) except the control, one or two days after treatment. In the fraction containing free phenolics, from the tested compounds, only ferulic acid showed an increase in cv. Flamingo (tolerant), and was particularly evident following treatments. On the other hand, the amounts of hydroxycinnamic acids increased rapidly in the two cultivars following Milsana treatment, suggesting their role in disease reduction. All compounds showed antifungal activity when tetsed against common pathogens of cucumber (Botrytis cinerea, Pythium ultimum, and P. aphanidermatum), but in general methyl esters were more fungitoxic than their corresponding free acids. This study suggests that cucumber is able to release antifungal compounds that are instrumental in repressing powdery mildew infection. This response is seemingly independent from the level of genetic resistance associated with each cultivar.  相似文献   

14.
Cucumber seedlings growing in a 12 mixture of soil (Portsmouth B1) and sand adjusted to pH 5.2 were treated every other day five times with 0, 0.0625, 0.125, 0.25, or 0.5 mol/g soil of ferulic, caffeic,p-coumaric,p-hydroxybenzoic, protocatechuic, sinapic, syringic, or vanillic acids. Treatments began when seedlings were 8 days old. The effects on mean absolute rates of leaf expansion were used to estimate the relative potencies of these phenolic acids to ferulic acid. Based on the results of this experiment, ferulic,p-coumaric,p-hydroxybenzoic, and vanillic acids were chosen for further study. Materials and procedures were identical in the second study, but treatments consisted of mixtures of the four phenolic acids at concentration combinations designed to achieve 40 % or 60 % inhibition of absolute rates of leaf expansion. Using joint action analysis, a model describing the action of the phenolic acid mixtures was developed. A model involving only two factor terms was sufficient to describe the observed responses of cucumber leaf area to the phenolic acid mixtures. The action ofp-hydroxybenzoic acid on absolute rates of leaf expansion was inhibited by the presence of the other three phenolic acids. No other antagonisms or synergisms existed among the four compounds.This research was partially supported by the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7643 and by the US-Spain Joint Committee for Scientific and Technological Cooperation project CCA-8309/166.  相似文献   

15.
Heterogeneity of sugarcane lignin with respect to the composition of structural units in different morphological regions was studied by microautoradiography and some degradative analyses. Structure of the lignin differs among fiber, vessel and parenchyma. The lignin in the secondary wall of fiber is composed of syringyl (S)-, guaiacyl (G)- and p-hydroxyphenyl (H)-propane units with accompanying phenolic acid residues, and the proportion of these monolignols is S > G > H. The lignin in vessels of protoxylem contains more G and H units than S units, and that in vessels of metaxylem is similar to that in fibers. Phenolic acid constituent in sugarcane cell wall includes sinapic acid in addition to p-coumaric and ferulic acids. Ferulic acid deposits at the very early stage of lignification, and p-coumaric and sinapic acids increasingly deposit with the progress of lignification. Therefore, the ratio of p-coumaric acid or sinapic acid to ferulic acid increases with lignification. Parenchyma wall involves larger amount of phenolic acids than vascular bundle does. The lignin in parenchyma is difficult to isolate by Björkman procedure, because there is greater possibility to form cross-linkage among cell wall polymers through phenolic acids. The cross linkages involving phenolic acid ester also explains why the sugarcane lignin is easily degraded.  相似文献   

16.
Regeneration failure ofPicea abies in a subalpine bilberry-spruce forest was studied in relation to phenolic compounds, their occurrence and toxicity. Germination bioassays with natural leachates of bilberry (Vaccinium myrtillus) and spruce showed negative effects on root elongation of spruce seedlings. Growth bioassays on litter and humus demonstrated inhibitory effects of these organic layers.p-Hydroxyacetophenone, a spruce-specific metabolite, was isolated in spruce throughfall (10–6 M), in water extracts of litter (between 1 and 8 µg/g dry wt) and organic layer (less than 1 µg/g dry wt) in addition to tannins and several common phenolic acids. Potential relationships between vegetation cover and phenolic pattern of the soil are discussed, since organic layers under bilberry heath exhibited higher amounts of phenolic acids and tannins than those under spruce.p-Hydroxyacetophenone and caffeic acid reduced, even at 5 × 10–5 M, spruce seedling growth, especially root development, with additive effects for these two monomers. Autotoxicity involving spruce trees and allelopathy of understory species, mediated byp-hydroxy-acetophenone and other phenolic compounds, including tannins, deserves further attention in regeneration studies.  相似文献   

17.
Antioxidative properties ofp-hydroxybenzoic, vanillic, syringic, 3,4-dihydroxybenzoic,p-coumaric, ferulic, sinapic and caffeic acids were studied in the concentration range 0.02–0.20 wt% during autoxidation at 100°C of lard and sunflower oil methyl esters (MEL and MESO, respectively). In both lipid systems, the derivatives of benzoic acid had weaker inhibiting properties than did the corresponding analogues of cinnamic acid. The effectiveness and strength of the antioxidative action were considerably lower in the lipid system MESO, which was rich in linoleic acid and was more easily oxidized. Thep-hydroxybenzoic, vanillic, syringic andp-coumaric acids in this system exercised no inhibiting effect. We established that the molecules of the investigated phenolic acids initiated the chain radical process of autoxidation, and the formed antioxidant radicals propagated the chains as a result of the reaction with the lipid substrate. These reactions proceeded at a higher rate in MESO than in MEL.  相似文献   

18.
Combined far-infrared radiation with hot-air convection (FIR-HA) drying was used for improving colour and antioxidant properties of mulberry leaf tea. Antioxidant properties and phenolic compounds of FIR-HA dried mulberry tea were determined and compared with the commercial product and with fresh leaves. We found that a smaller decrease in L and b values of the FIR-HA dried tea than those of commercial tea was observed. FIR-HA tea was found to have similar colour to fresh leaf while the commercial tea had darker colour. A significant decrease in total phenolic acid content (TPC) and total flavonoid content (TFC) was found in hot-air (HA) dried commercial tea compared to fresh leaves, while TPC in FIR-HA dried tea was significantly increased. Similar results were found in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical activities. However, the results were different for ferric reducing antioxidant power (FRAP). Both teas had lower FRAP values compared to fresh leaves. Eleven phenolic compounds were identified in fresh leaf and in mulberry tea, namely p-coumaric acid, benzoic acid, (+)-catechin, chlorogenic acid, vanillic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid, gallic acid and caffeic acid. The total content of phenolic compounds (TPCC) increased in FIR-HA dried samples compared to those of HA dried tea, except for chlorogenic and syringic acids, which were found in greater amounts in HA dried commercial tea. Our results have demonstrated that FIR-HA should be considered as a suitable drying method for mulberry tea with respect to preserving its antioxidant properties and phenolic compounds.  相似文献   

19.
Moringa oleifera is a plant that grows in tropical and subtropical areas of the world. Its leaves are rich of nutrients and bioactive compounds. However, several differences are reported in the literature. In this article we performed a nutritional characterization and a phenolic profiling of M. oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. In addition, we investigated the presence of salicylic and ferulic acids, two phenolic acids with pharmacological activity, whose presence in M. oleifera leaves has been scarcely investigated so far. Several differences were observed among the samples. Nevertheless, the leaves were rich in protein, minerals, and β-carotene. Quercetin and kaempferol glycosides were the main phenolic compounds identified in the methanolic extracts. Finally, salicylic and ferulic acids were found in a concentration range of 0.14–0.33 and 6.61–9.69 mg/100 g, respectively. In conclusion, we observed some differences in terms of nutrients and phenolic compounds in M. oleifera leaves grown in different countries. Nevertheless, these leaves are a good and economical source of nutrients for tropical and sub-tropical countries. Furthermore, M. oleifera leaves are a source of flavonoids and phenolic acids, among which salicylic and ferulic acids, and therefore they could be used as nutraceutical and functional ingredients.  相似文献   

20.
Phenolic acid treatments of cucumber seedlings (Cucumis sativus cv “Early Green Cluster”) inhibited transpiration, water utilization, leaf area, and absolute and relative rates of leaf expansion. The cinnamic acids, ferulic and p-coumaric acids, were two to five times more inhibitory than the benzoic acids, p-hydroxybenzoic acid and vanillic acid. When phenolic acid concentrations were maintained at inhibitory concentrations through multiple successive treatments, percent inhibition of water utilization remained relatively constant for a given concentration and phenolic acid, percent inhibition of leaf area initially increased and then leveled off to a constant percent, and percent inhibition of transpiration and rates of leaf area expansion declined over time. Subsequently, p-coumaric acid was chosen as the model compound for further study. When p-coumaric acid was inhibitory, percent inhibition of transpiration, water utilization, and rates of leaf area expansion of actively growing leaves rapidly declined (i.e., was lost) as p-coumaric acid concentrations surrounding roots decreased. Absolute and relative rates of leaf expansion, for example, declined approximately 12 and 14%, respectively, for every 0.1 mM decline in p-coumaric acid concentration. Uptake of p-coumaric acid by cucumber seedling roots was continuous over the 24- or 36-hr periods monitored, but was not consistently related to the initial p-coumaric acid treatment concentrations. However, declining p-coumaric acid concentrations monitored at 6- or 12-hr intervals over the 24- or 36-hr periods continued to be highly correlated to the initial p-coumaric acid treatment concentrations. A 25% depletion by 13-d-old cucumber seedlings took 8.5, 12, 19.5, 25, and 29.5 hr for 0.125-, 0.25-, 0.5-, 0.75-, and 1-mM treatments, respectively. Uptake during periods when phenolic acid concentrations and root uptake (depletion from solution) were related appeared to represent periods dominated by apoplastic movement into the intercellular spaces of roots. Uptake during periods without this relationship likely represented periods dominated by symplastic movement. The ability of cucumber seedlings to modify active phenolic acid concentrations surrounding their roots suggests that cucumber seedling can directly influence the magnitude of primary and secondary effects of phenolic acids through feedback regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号