首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation of magnetic nanoparticles coated with chitosan (CS-coated Fe3O4 NPs) in one step by the solvothermal method in the presence of different amounts of added chitosan is reported here. The magnetic property of the obtained magnetic composite nanoparticles was confirmed by X-ray diffraction (XRD) and magnetic measurements (VSM). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) allowed the identification of spherical nanoparticles with about 150 nm in average diameter. Characterization of the products by Fourier transform infrared spectroscopy (FTIR) demonstrated that CS-coated Fe3O4 NPs were obtained. Chitosan content in the obtained nanocomposites was estimated by thermogravimetric analysis (TGA). The adsorption properties of the CS-coated Fe3O4 NPs for bovine serum albumin (BSA) were investigated under different concentrations of BSA. Compared with naked Fe3O4 nanoparticles, the CS-coated Fe3O4 NPs showed a higher BSA adsorption capacity (96.5 mg/g) and a fast adsorption rate (45 min) in aqueous solutions. This work demonstrates that the prepared magnetic nanoparticles have promising applications in enzyme and protein immobilization.  相似文献   

2.
《Ceramics International》2020,46(7):8928-8934
Multifunctional nanomaterials composed of magnetic and fluorescent nanoparticles have been one of the most extensive pursuits because of the potential application in bio-research. In this paper, we demonstrated an efficient method by coupling CdSe/CdS/ZnS quantum dots (QDs) with Fe3O4 magnetic nanoparticles(MNPs) while functionalized multiwall carbon nanotubes (f-MWCNTs) were used as matrix to synthesize a kind of magnetic fluorescent nanocomposite. Compared with other matrix materials, carbon nanotubes have the advantages of high surface areas and good biocompatibility. The incorporation of f-MWCNTs supplies plenty of nucleation sites for the preferential growth of Fe3O4 nanoparticles, avoiding the agglomeration phenomenon of Fe3O4 MNPs in traditional co-precipitation method. Moreover, the un-reacted functional groups of f-MCNTs can further adsorb biological species and drugs, averting the decline of fluorescent intensity caused by the modification of biological species and drugs. The synthetic product maintains the unique properties of rapid magnetic response and efficient fluorescence, which shows a broad application prospect in fluorescent labeling, biological imaging, cell tracking and drug delivery.  相似文献   

3.
4.
S. Zhao 《Powder Technology》2010,197(3):295-487
Magnetite (Fe3O4) nanopowder can be prepared by one-pot solvothermal reaction of Fe-urea complex ([Fe(CON2H4)6](NO3)3) in ethanol. The result of X-ray powder diffraction (XRD) suggests the formation of Fe3O4 whose lattice constant is 8.385 Å. The formation of Fe3O4 is further confirmed from X-ray photoelectron spectroscopy (XPS) measurements. Transmission electron micrograph (TEM) observations show that Fe3O4 particles are nearly spherical in shape. The crystallite size of Fe3O4 can be controlled from 9.7 to 20.5 nm by varying the solvothermal reaction time. Room temperature magnetization hysteresis curves exhibit almost immeasurable values of coercivity and remanence, suggesting that the Fe3O4 nanopowder possesses superparamagnetic characteristics. The saturation magnetization (Ms) increases from 32.6 to 42.9 emu/g when the reaction time increases from 10 to 50 h.  相似文献   

5.
The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.  相似文献   

6.
Silica-coated magnetic nanoparticles (MNPs) have great potential for use in field of biotechnology owing to their unique properties, which can be manipulated by an external magnetic field gradient. Herein, we describe a method for facile synthesis of monodispersed silica-coated MNPs (MNP@SiO2 NPs). Commercially available oleate-MNPs were successfully converted to polyvinylpyrrolidone-MNPs (PVP-MNPs), and then coated with silica by the modified Stöber method. More than 95% of MNPs were individually coated with a silica shell; non-magnetic core silica nanoparticles (NPs) were not detected. Notably, the MNP@SiO2 NPs are highly monodispersed in size (size distribution < 2.5%) and synthesis at the scale of grams was easily obtained by a simple scale up process. Moreover, aggregation was not detected upon storage of over three months.  相似文献   

7.
Cadmium telluride (CdTe) and iron oxide nanoparticles doped silica nanospheres were prepared by a multistep method. Iron oxide nanoparticles were first coated with silica and then modified with amino group. Thereafter, CdTe nanoparticles were assembled on the particle surfaces by their strong interaction with amino group. Finally, an outer silica shell was deposited. The final products were characterized by X-ray powder diffraction, transmission electron microscopy, vibration sample magnetometer, photoluminescence spectra, Fourier transform infrared spectra (FT-IR), and fluorescent microscopy. The characterization results showed that the final nanomaterial possessed a saturation magnetization of about 5.8 emu g−1 and an emission peak at 588 nm when the excitation wavelength fixed at 380 nm.  相似文献   

8.
Guangyu Liu  Han Zhang  Yongmei Wang 《Polymer》2007,48(20):5896-5904
Monodisperse silica/polydivinylbenzene (SiO2/PDVB) and silica/poly(ethyleneglycol dimethacrylate) (SiO2/PEGDMA) core-shell hybrid microspheres were prepared by a two-stage reaction with silica particles' grafting of 3-(methacryloxy)propyltrimethoxysilane (MPS) as core and PDVB or PEGDMA as shell, in which the MPS-modified silica core with diameter of 238 nm was synthesized by Stöber method and subsequently grafted with MPS as the first-stage reaction. The PDVB or PEGDMA shell was then encapsulated over the MPS-modified silica core by distillation precipitation polymerization of divinylbenzene (DVB) or ethyleneglycol dimethacrylate (EGDMA) in neat acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) initiator as the second-stage reaction. The encapsulation of PDVB and PEGDMA on modified silica core particles was driven by the capture of DVB or EGDMA oligomer radicals via the vinyl groups on the surface of the modified silica cores during the second-stage polymerization in the absence of any stabilizer or surfactant. The shell thickness of the core-shell hybrid particles was controlled by the feed of DVB or EGDMA monomer during the polymerization. Hollow PDVB or PEGDMA microspheres with various shell thickness were further developed after selective removal of the modified silica cores with hydrofluoric acid. The resultant core-shell hybrid materials and hollow microspheres were characterized by transmission electron microscopy (TEM), and Fourier transform infrared spectra (FT-IR).  相似文献   

9.
Magnetic chitosan microspheres: preparation and characterization   总被引:21,自引:0,他引:21  
In this study, magnetic chitosan microspheres were prepared in a well shaped spherical form with a size range of 100 to 250 μm (size distribution ±15 to ±40 μm, respectively) by the suspension cross-linking technique for use in the application of magnetic carrier technology. The magnetic material (i.e. Fe3O4) used in the preparation of the magnetic chitosan microspheres was prepared by precipitation from FeSO4 and Fe2(SO4)3 solutions in basic medium and then ground to the desired size (i.e. 1–5 μm). The morphological and magnetic properties of the microspheres were characterized by different techniques (i.e. SEM, optical microscopy, magnetometry). The results demonstrated that the stirring rate of the suspension medium and the Fe3O4/chitosan ratio are the most effective parameters for the size/size distribution and the magnetic quality of the microspheres, while the chitosan molecular weight (MW) has no significant effect on these properties for the given MW range (i.e. 150 to 650 kDa). The best magnetic quality of the magnetic chitosan microspheres is around 9.1 emu/g microsphere at 10 kG magnetic field intensity.  相似文献   

10.
Trypsin is often used to detach adhered cell subculture from a substrate. However, the proteolytic activity of trypsin may harm cells by cleaving the cell membrane proteins. The present study shows that cellular uptake of fluorescent nanoparticles is remarkably increased within 24 h after trypsinization. These results highlight the trypsin-induced protein digestion, provoking leaky cell plasma membrane which leads to the strongly enhanced cellular uptake of the nanoparticles. To prevent this effect, one should expose cells to the nanoparticle (NP)-based fluorescent labels at least 48 h after trypsinization.  相似文献   

11.
《Ceramics International》2015,41(7):8670-8679
In the present work, CoMnO3, Co3O4 and Mn2O3 powders were prepared by using a simple hydrothermal method, and the urea and polyvinyl alcohol (PVA) were served as the precipitator and surface active agent, respectively. The CoMnO3 and Mn2O3 exhibit the same spindle-like structure with the size of several micrometers, while the Mn2O3 displays the nanosheet morphology, the as-prepared materials are all high degree of crystallinity. In addition, the magnetic properties discussion indicates that the as-prepared materials exhibit ferromagnetic and antiferromagnetic behaviors at 5 K and 300 K, respectively.  相似文献   

12.
《Ceramics International》2023,49(19):31364-31377
To create a spinel ferrite with excellent performance for electromagnetic (EM) wave absorption in the low frequency range of 4–6 GHz, compositions based on Co0.75Zn0.125Fe0.125Fe2O4 (CZF–1) and Co0.5Zn0.25Fe0.25Fe2O4 (CZF–2) with multiple elements substituted for A sites were synthesized by using solvothermal method. Hollow porous magnetic/magnetic heterostructure microspheres (HHMs) of CZF–A1 and CZF–A2 with multiple interfaces were prepared by hydrogen–thermal reduction of CZF–1 and CZF–2, and their unique structure and EM absorption properties were investigated in detail. The widest effective absorption bandwidth (EAB) of CZF–A1 and CZF–A2 was 4.1 GHz (13.6–17.7 GHz) and 3.7 GHz (8.0–11.7 GHz) for a corresponding thickness of 1.4 mm and 2.0 mm, respectively. In addition, the minimum reflection loss (R.Lmin) of CZF–A1 and CZF–A2 reached –49.1 dB (at fm = 13.4 GHz) and –45.0 dB (at fm = 4.2 GHz) at a thicknesses of 1.6 mm and 3.7 mm, respectively. More specifically, in the low frequency region of 4–6 GHz, CZF–A1 and CZF–A2 exhibited excellent EM wave absorption due to the effective regulation of their natural resonance frequency. The EM wave absorption frequency band of CZF–A1 and CZF–A2 samples was able to completely cover the 4–6 GHz frequency region for at coating thickness of CZF–A1 and CZF–A2 was only 3.5 mm and 3.3 mm respectively, and their R.Lmin reached –36.5 dB and –22.6 dB. Moreover, the absorption mechanisms of CZF–A1 and CZF–A2 including magnetic resonance, eddy current loss, interfacial polarization and dipole polarization were also investigated in detail. This research provides new insights and guidance for the development of spinel ferrite-based EM absorbers for high efficiency EM wave absorption in the low frequency (4–6 GHz) region.  相似文献   

13.
Pickering suspension polymerization was used to prepare magnetic polymer microspheres that have polymer cores enveloped by shells of magnetic nanoparticles. Styrene was emulsified in an aqueous dispersion of Fe3O4 nanoparticles using a high shear. The resultant Pickering oil-in-water (o/w) emulsion stabilized solely by magnetic nanoparticles was easily polymerized at 70 °C without stirring. Fe3O4 nanoparticles act as effective stabilizers during polymerization and as building blocks for creating the organic–inorganic hybrid nanocomposite after polymerization. The fabricated magnetic nanocomposites were characterized by FTIR, XRD, TGA, DSC, GPC, XPS and SEM. The structures of the polymer core and the nanoparticle shell were analyzed. We investigated the effects on the products of the weight of Fe3O4 nanoparticles used to stabilize the original Pickering emulsions. Pickering suspension polymerization provides a new route for the synthesis of a variety of hybrid nanocomposite microspheres with supracolloidal structures.  相似文献   

14.
In this work, a novel strategy has been adopted for the synthesis of hybrid Co-doped ZnO (Co/ZnO) microspheres using the solvothermal method with a synergistic effect of ultrasonic and microwave radiation. The Co/ZnO microspheres were characterized by XRD, FE-SEM, XPS and BET techniques. Sensing tests revealed that the Co/ZnO microspheres exhibited highly better ethanol sensing properties than pure ZnO nanoparticles did, including lower limit of detection (less than 10?ppm), higher response (ca. 120–100?ppm ethanol), lower operating temperature (ca. 220?°C), faster response (10?s) and recovery time (5?s) and better selectivity. The superior gas sensing properties were mainly attributed to the incorporation of Co, which increased the amount of oxygen vacancies and adsorbed oxygen. The sensing mechanism has been explained by oxygen chemisorption on the ZnO surfaces and subsequent reactions of surface adsorbed oxygen species with the ethanol molecules.  相似文献   

15.
Composite alginate microspheres were synthesized via a modified emulsification technique and characterized by inverted optical microscope, transmission electron microscope, ζ‐potential analyzer, UV–vis spectrophotometer, luminescence spectrometer, and vibrating sample magnetometer. The results show that the synthetic parameters including the weight ratio of maghemite nanoparticles to alginate, hydrophile‐lipophile balance (HLB) value, stirring speed, and CaCl2 dripping rate play important roles in the synthesis of microspheres. Furthermore, the composite alginate microspheres exhibit good superparamagnetism and fluorescence, which can serve both as magnetic resonance contrast agents and optical probes for biological imaging. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Merging nanoparticles with different functions into a single microsphere can exhibit profound impact on various applications. However, retaining the unique properties of each component after integration has proven to be a significant challenge. Our previous research demonstrated a facile method to incorporate magnetic nanoparticles into porous silica microspheres. Here, we report the fabrication of porous silica microspheres embedded with magnetic and gold nanoparticles as magnetic recoverable catalysts. The as-prepared multifunctional composite microspheres exhibit excellent magnetic and catalytic properties and a well-defined structure such as uniform size, high surface area, and large pore volume. As a result, the very little composite microspheres show high performance in catalytic reduction of 4-nitrophenol, special convenient magnetic separability, long life, and good reusability. The unique nanostructure makes the microspheres a novel stable and highly efficient catalyst system for various catalytic industry processes.  相似文献   

17.
荧光磁性复合物兼有磁性微粒的快速分离和量子点的优异荧光特性,集选择、标记、分离、检测等功能为一体,在生物、化学、医学等交叉科学领域具有广泛的应用。介绍了磁性纳米颗粒、量子点和荧光磁性复合物的应用前景;综述了用层层自组装法、微乳液法、Stber法等方法制备荧光磁性复合物并进一步阐释了其在细胞分离、药物运输等方面的应用,结合当前的研究现状,分析了其主要的发展方向和仍需解决的问题。  相似文献   

18.
ZnO nanoparticles (NPs) with rod, bullet and broom-like morphologies have been synthesized by the solvothermal method. Structural analysis revealed ZnO NPs to be of the single crystal wrutzite hexagonal structure. Their size and morphology were controlled by varying the polarity of solvents. The aspect ratio of ZnO NPs at the lower polarity was below 2, and their shape was like a bullet. When increasing the polarity of solvent, the aspect ratio also increases and the shape changes to a rod-like morphology. This process is very simple and scalable. In addition, it can be used for fundamental studies of the tunable morphology formation.  相似文献   

19.
The present paper describes ordered alloy FePt nanoparticles with high magnetic susceptibility to alternate current (ac) fields at around room temperature for biomedical applications such as magnetic sensing devices for diagnostics and magnetic hyperthermia for cancer therapy. Since ac magnetic susceptibility takes the maximum value at a temperature near the blocking temperature of magnetic nanoparticles, the blocking temperature of the FePt nanoparticles is required to be adjusted at around room temperature to improve biomedical performances. Ordered alloy FePt has much higher magnetic anisotropy than iron oxides, and it can be the best candidate in the case of their particle size less than 10 nm. The ordered alloy FePt nanoparticles are synthesized by reduction of Fe and Pt organo-metallic compounds with tetraethylene glycol using poly(N-vinyl-2-pyrrolidone) (PVP) as a protective agent. PVP is a water-soluble polymer, and is proper to obtain dispersion into water. Influences of reaction temperature on crystallite size (particle size) and blocking temperature and the relationship between the blocking temperature and the value of ac magnetic susceptibility at around room temperature are investigated. Furthermore, PVP concentration at the synthesis to obtain well dispersed nanoparticle-suspension is examined.  相似文献   

20.
Lu J  Li Y  Deng C 《Nanoscale》2011,3(3):1225-1233
In this work, we present a facile approach for the synthesis of zirconium phosphate (ZrP)-functionalized magnetic silica mesoporous microspheres for the selective enrichment of phosphopeptides. At first, magnetic mesoporous silica microspheres were prepared by directly coating mesoporous silica onto Fe3O4 magnetic microspheres, and then addition of phosphate onto the magnetic mesoporous silica microspheres was performed using 3-(trihydroxysilyl)propyl methylphosphate. The obtained phosphate-modified magnetic mesoporous microspheres were monodispersed with a mean diameter of 350 nm, and had an obvious mesoporous silica shell (~65 nm). Finally, the resultant phosphate-functionalized magnetic mesoporous microspheres were incubated in ZrOCl2 solution with gentle stirring overnight for the loading of Zr4+ cations. The obtained Zr4+-functionalized materials were applied to the selective enrichment of phosphopeptides from both standard protein digestion and real samples. The enriched peptides were analyzed by MALDI-TOF MS and LC-ESI MS. Experimental results demonstrated that zirconium phosphonate-modified magnetic mesoporous silica microspheres show excellent potential for the selective enrichment of phosphopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号