首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
协同显著目标检测的目的是在包含两张及以上相关图像的图像组中检测共同显著的物体.该文提出一种利用机器学习的方法对协同显著目标进行检测.首先,基于4个评分指标从图像组中选择部分显著目标易于检测的简单图像,构成简单图像集;接着,基于协同一致性的原则,从简单图像集中提取正负样本,并用深度学习模型提取的高维语义特征表示正负样本;...  相似文献   

2.
本文旨在研究一种基于深度学习的RGBD图像协同显著目标检测模型。首先,本文构建了多分支的编码器结构,有效地提取RGBD图像的深层卷积特征;然后,使用多模态特征融合模块充分融合来自编码器的深层特征;最后,通过基于残差基本块的解码器来预测得到显著性图。此外,本文以深层次监督的方式对整个网络进行约束优化。在两个公开数据集上的测试结果表明,所提模型在预测精度上优于当前6种主流模型,这其中我们的显著性图呈现出更精确的边缘细节。   相似文献   

3.
传统基于统计模型的雷达目标检测算法往往仅利用雷达探测回波的能量信息分辨雷达目标,其难以适应密集杂波环境下的雷达探测感知场景,从而显著降低雷达目标探测性能。针对密集杂波背景下的雷达目标检测难题,本文引入随机森林算法,提出一种基于随机森林的雷达目标多维特征检测方法。利用随机森林方法充分融合雷达探测目标回波中时间维、空间维、距离维等多个维度的特征,形成对雷达目标与环境杂波差异的深度刻画,从而实现精准鲁棒的雷达目标检测,显著提升雷达的目标检测性能。最终,基于雷达实测数据对本文所提方法的性能进行验证,实验结果充分验证了本文所提算法的有效性。  相似文献   

4.
深度信息被证明是人类视觉的重要组成部分,然而大部分显著性检测工作侧重于2维图像上的方法,并不能很好地利用深度进行RGB-D图像显著性检测。该文提出一种融合显著深度特征的RGB-D图像显著目标检测方法,提取基于颜色和深度显著图的综合特征,根据构图先验和背景先验的方法进行显著目标检测。首先,对原始深度图进行预处理:使用背景顶点区域、构图交点和紧密度处理深度图,多角度融合形成深度显著图,并作为显著深度特征,结合颜色特征形成综合特征;其次,从前景角度,将综合特征通过边连接权重构造关联矩阵,根据构图先验,假设多层中心矩形为前景种子,通过流形排序方法计算出RGB-D图像的前景显著图;从背景角度,根据背景先验以及边界连通性计算出背景显著图;最后,将前景显著图和背景显著图进行融合并优化得到最终显著图。实验采用RGB-D1000数据集进行显著性检测,并与4种不同的方法进行对比,所提方法的显著性检测结果更接近人工标定结果,PR(查准率-查全率)曲线显示在相同召回率下准确率高于其他方法。  相似文献   

5.
显著性目标检测(SOD)作为目前计算机视觉以及计算机图形学领域中研究的基本课题之一,是许多其他复杂任务的预处理阶段的任务,对例如图像理解与解释、视觉追踪、语义分割,视频分析等对象级应用的发展起到了极大的推动作用。随着深度传感器的普及,深度图像中蕴含的空间信息线索在显著性检测研究中提供了与RGB图像中蕴含的不同模态的辅助补充特征信息,这对于检测精度的提升来说愈发重要,因此如何有效地融合RGB与深度图像中的不同模态间的特征信息成为了RGB-D显著性目标检测课题中研究的重要问题。针对RGB与Depth模态间的特征融合问题,本文设计了一种基于跨模态特征信息融合的双流RGB-D显著目标检测网络模型,通过使用设计的跨模态特征融合模块去除某些低质量深度图带入的冗余与噪音,随后提取放大被优化改良过后的深度特征线索与RGB特征线索间的相似性与差异性,完成跨模态特征信息的有效融合。除此之外在网络编码结构的顶端增加了改良的非局部模块,通过自注意力机制更好地捕捉了的上下文信息以及像素间的长距离依赖。通过使用的两个数据集上的实验表明,这一模型在4个评价指标上取得了较好的表现。  相似文献   

6.
李婷  吴迪  郭凤姣  屈宗顺  万琴 《光电子.激光》2020,31(11):1231-1238
在真实场景中,物体的尺寸往往是多样的,基于大 图像的目标检测很难检测所有的物体。为了检测较小尺寸目标,本文利用显著图和稳定区域 融合,建立小目标检测算法模型。首先利用基于颜色名空间的显著性检测算法生成显著图, 同时采用基于最大稳定极值区域(MSER)算法提取局部稳定区域,MSER算法是目前针对图像 变形最为稳定的特征检测算法;其次采用像素乘性融合稳定区域和显著图以降低虚警概率; 最后调用一些图像处理过程,包括形态学重建操作、灰度变换、形态空穴填充操作,能够有 效抑制背景,同时均匀的突出显著性目标,以推断和优化最终结果。为了验证该算法的有效 性和实用性,以PR曲线为评价指标,比较了几种主流算法的性能,包括AZ-NET、FPN、PGAN 。通过对Sky数据集和Ground数据集的测试,表明该算法能够很好地适应目标尺寸的变化, 在检准率和检全率方面优于现有的小目标检测算法,具有良好的鲁棒性。  相似文献   

7.
针对Faster区域卷积神经网络目标检测算法,提出了一种自适应候选区域建议网络.在训练过程中根据当前损失反馈调节候选区域数目,使候选区域在一定范围内动态变化,进而节省开销,并记录下表现最好的候选区域数目;在测试时用记录的候选区域数目进行测试.针对Softmax函数对候选区域进行分类时需要人为选取置信度阈值带来的时间成本...  相似文献   

8.
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。  相似文献   

9.
红外成像的小目标通常缺乏明确的轮廓和纹理信息,导致仅依靠目标自身特征进行识别存在较大困难。为克服这一不足,本文提出了一种新型混频特征融合检测(mixed-frequency feature fusion detection, MFFD)模型,它通过充分聚合目标及周边背景的上下文信息,有效提升小目标检测性能。模型中的混频提取模块通过结合全局低频语义特征与局部高频目标细节,显著增强系统对弱小目标的感知能力;此外,模型中的多阶段融合模块通过高效协同不同级别特征的交互融合,促进更深层次的语义理解和空间信息的整合。在公开数据集NUAA-SIRST和IRSTD-1k中,MFFD-Net相较于其他五种基于深度学习的方法表现更优。与AGPC-Net相比,MFFD-Net在NUAA-SIRST数据集上的IoU和nIoU指标分别提升了4.42%和4.33%,在IRSTD-1k数据集上相应指标分别提升了3.63%和6.38%。这充分表明本模型在复杂背景下进行小目标检测具有较大的应用潜力。  相似文献   

10.
为了应对复杂动态环境下红外与可见光双模态目标检测的挑战,特别是目标特征表达不足以及红外可见光特征在双模态融合中无法充分利用互补特征导致漏检和误检的问题,提出了一种用于目标检测的双分支特征增强与融合网络(Dual-Branch Feature Enhancement and Fusion,DBEF-Net)。针对模型对红外和可见光特征关注度不足的问题,设计了一种特征交互增强模块,该模块能够有效地关注并增强双模态特征中的有用信息。同时,为了更有效地利用双模态的互补特征,采用基于Transformer的双模态融合网络,并引入交叉注意力机制,以实现模态间的深度融合。实验结果表明,在SYUGV数据集上,与现有双模态目标检测算法相比,本文方法的平均检测精度更高,处理速度也能满足实时检测的需求。  相似文献   

11.
程藜  吴谨  朱磊 《液晶与显示》2016,31(7):726-732
提出了一种基于结构标签学习的显著性目标检测算法,将结构化学习方法应用到显著性目标检测中。首先从含有标记的图像中随机采集固定大小的矩形区域,并记录其结构标签;然后使用含结构标签的区域特征构建决策树集合;最后采用监督学习的方法对图像进行优化预测,得到最终的显著图。实验结果表明,本文方法能较准确地检测出图像库中图像的显著性区域,在数据库MSRA5000和BSD300的AUC值分别为0.891 8、0.705 2,说明本文方法具有较好的显著性检测效果。  相似文献   

12.
针对基于深度学习的目标检测网络模型多采用级联的卷积网络结构进行特征提取,没有很好地利用多尺度特征融合的信息,以及卷积往往采用方形卷积核而没有提取出具备方向性的特征等问题,提出了一种特征提取模块,采用不同大小形状的卷积核结合异性卷积核并行提取特征,并进行融合。该类结构相比于级联网络更能提取并融合目标的多尺度特征,同时提取具有方向性的特征。提出的特征增强型单步目标检测器(Feature Enhanced Single Shot Detector,FESSD)网络基于单步目标检测器(Single Shot Detector,SSD),修改了网络结构、加入特征提取模块并采用多层特征融合,在VOC0712数据集上大大提高了检测准确率。  相似文献   

13.
目标检测通常利用复杂的、高维度的特征来提高其检测精度,而高维特征往往会产生较高的计算复杂度和存储开销。经典的特征压缩算法常常被用于目标检测系统以实现特征降维,但在其求解过程中会涉及到大量的矩阵分解运算,从而降低了算法的实时性。针对此问题,提出一种基于随机映射的特征压缩算法。该算法仅通过一个稀疏随机矩阵和简单的矩阵乘法运算就实现了特征从高维空间到低维空间的映射。利用经该算法压缩后的特征向量构建了Ada-Boost分类器,实验结果表明,该分类器在保证检测精度的前提下,提高了目标检测的实时性。  相似文献   

14.
提出一种多层特征图信息融合的海滩小目标检测方法,从上下文信息与强化特征图信息融合的角度提升小目标游客的检出率。首先,透过更全面、有效的GAM注意力机制思想结合CSP结构提出GCSAM结构,用于增强检测YOLOv5模型中主干网络跨纬度感受区,聚焦小目标特征学习;其次,在颈部融合端使用BIFPN结构优化YOLOv5网络中PANet结构,补全跨层特征信息之间的传递,使得特征图包含更多的上下文信息;最后,采用幂变换改进YOLOv5网络中CIOU_Loss为Alpha-CIOU_Loss,有效提升预测框的回归精度。实验证明,在满足实时性要求的前提下,相比于原始YOLOv5网络,文中方法在海滩小目标游客检测上查准率提升2.00%,查全率提升5.33%,平均精度均值提升4.36%。文中方法在海滩小目标游客密集、遮挡、目标更小的情况下具有更好的鲁棒性。  相似文献   

15.
杨丰瑞  杜奎  庄园 《电视技术》2016,40(10):101-106
TLD目标跟踪算法将检测和跟踪同时加入跟踪框架,并引入半监督机器学习算法对锁定目标不断学习以捕获其最新外观,使目标无处可逃,从而实现对未知目标的长时跟踪.简要介绍了TLD算法的理论背景和系统框架,并指出其存在的主要缺陷.然后对各个缺陷所提出的改进方法进行详细地综述,并给出自己的评述.最后总结全文并展望TLD目标跟踪算法在未来几年的发展趋势.  相似文献   

16.
深度学习技术在目标检测领域取得了巨大进展,但其优异的性能建立在大量精确标注的数据集之上。在样本稀缺的特定领域,如国防海上安全和医学等领域,获取具有标注的数据尤为困难。因此,小样本目标检测领域因其能够应对样本稀疏性所带来的挑战而得到学术界的广泛研究。该领域的研究目标是得到能够从极其有限的样本中提取知识并实现高效目标检测的算法框架。然而,由于新类样本的稀缺性,其与基类之间存在着显著的分布差异,导致了小样本目标检测任务的准确度受限。此外,在对模型应用新类进行微调的过程中,由于新类与基类的不重叠性,模型学习新类的特征知识的过程中会存在大量的梯度更新,导致基类的特征知识被遗忘的问题,从而降低模型的整体性能。针对新类别样本稀缺的问题,本研究采用自监督学习策略。自监督学习,无须依赖标注信息,便于构建代理任务以进行模型训练,是缓解小样本目标检测样本稀缺问题的有效方案。为了避免模型在学习新类特征知识后出现基类灾难性遗忘的问题,本文将自监督学习与两阶段的目标检测器相结合。通过在类别域应用潜在特征来表示各个类别的特征信息,通过动态更新策略在学习新类别的过程中进一步优化特征,并借助检测框域构建良好的代理任务提升回归框的精准度。本研究在PASCAL VOC数据集和MS COCO数据集上进行大量的实验验证,实验结果表明,无论是在新类性能方面还是总体性能方面,本研究所提出的方法相较于其他多个小样本目标检测模型均展现出更加优越的性能表现。  相似文献   

17.
针对半导体排产控制问题,提出一种基于多叉树随机森林的数据分类综合排产算法。首先,以周计划投产品种为输入,采用多叉树随机森林数据分类方法,以品种名称、投产量、交货期和所属类别作为半导体排产的特征信息进行数据分类;其次,根据分类结果,以降低\"改机\"时间为目的,进而确定日投产品种和数量;最后,通过应用研究验证算法的可行性。实验结果表明:所提出的算法有效降低\"改机\"时间,具有一定的有效性和优越性。  相似文献   

18.
在安检领域,目前最主要的手段是人工分析X光图像,以检测是否隐藏的违禁品。由于人工检测存在较强的主观性,并且在安检员疲劳时容易造成漏判、错判。针对这一问题,对X光异物图像进行自动识别研究,提出了基于Tamura纹理特征和随机森林的X射线异物分类方法。介绍了基于计算机视觉的X光违禁品自动检测识别系统;提出一种基于Contourlet变换的Taruma纹理特征提取方法,通过该方法得到Taruma纹理特征向量;最后采用随机森林分类器对违禁品图像进行分类判断。实验结果表明,基于Tamura纹理特征和随机森林的X射线异物分类能够有效地区分不同种类的违禁品。  相似文献   

19.
井方科  任红格  李松  史涛 《半导体光电》2024,45(6):1014-1023
针对现有交通标志检测算法对小目标检测效果较差的问题,提出了一种基于级联多尺度特征融合的交通标志检测算法。首先,设计了一种新的级联多尺度特征融合网络,利用多尺度序列特征融合模块和三重特征编码模块,使模型能更好地融合交通标志的全局特征和细节特征。其次,在骨干网络中加入可变形注意力机制,使模型专注于相关区域并捕获更丰富的图像特征。最后,使用Inner-IoU损失函数,提升了模型的泛化性能。在CCTSDB数据集上的测试结果表明,改进模型的平均精度为55.3%,较YOLOv8s模型提升了3.2%;在TT100K和VOC数据集上的表现凸显了模型出色的泛化性能。  相似文献   

20.
提出一种简单快速的红外图像显著目标检测算法,算法可以分为三步:首先,对原始红外图像进行预处理以增强目标与背景的对比度;然后,在log频谱中提取预处理后图像的频谱残差,通过相应的反变换及简单的阈值分割,可以得到显著目标的大致区域;最后,采用一个滑动窗口在目标候选区域内进行搜索确定显著目标的准确位置,这个过程采用由目标及其周围区域在原始图像中的灰度分布得到的半局部特征对比度的概率表达得到每个像素点的显著性值,进行阈值分割得到显著目标,改变滑动窗口的大小可以检测出不同尺度的目标。采用大量的红外图像对算法进行测试,实验结果表明该算法具有高效性和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号