首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A WiMedia/MBOA compliant RF transceiver for ultra-wideband data communication in the 3-5-GHz band is presented. The transceiver includes receiver, transmitter and synthesizer is completely integrated in 0.13-mum standard CMOS technology. The receiver uses a feedback-based low-noise amplifier (LNA) to obtain an RF gain of 4 to 37 dB and an overall measured noise figure of 3.6 to 4.1 dB over the 3-5-GHz band of interest. The transmitter supports an error vector magnitude (EVM) of -28 dB up to -4 dBm output power and meets the FCC and WiMedia mask specifications. The power consumption from a single supply voltage of 1.5 V is 237 mW for the receiver and 284 mW for the transmitter, both including the synthesizer  相似文献   

2.
A 60-GHz fully integrated bits-in bits-out on–off keying (OOK) digital radio has been designed in a standard 90-nm CMOS process technology. The transmitter provides 2 dBm of output power at a 3.5-Gb/s data rate while consuming 156 mW of dc power, including the on-chip 60-GHz frequency synthesizer. A pulse-shaping filter has been integrated to support high data rates while maintaining spectral efficiency. The receiver performs direct-conversion noncoherent demodulation at data rates up to 3.5 Gb/s while consuming 108 mW of dc power, for a total average transceiver energy consumption of 38 pJ/bit in time division duplex operation. To the best of the authors' knowledge, this is the lowest energy per bit reported to date in the 60-GHz band for fully integrated single-chip CMOS OOK radios.   相似文献   

3.
Incorporating the direct-conversion architecture, a 5-GHz band radio transceiver front end chipset for wireless LAN applications is implemented in a 0.25-μm CMOS technology. The 4-mm2 5.25-GHz receiver IC contains a low noise amplifier with 2.5-dB noise figure (NF) and 16-dB power gain, a receive mixer with 12.0 dB single sideband NF, 13.7-dB voltage gain, and -5 dBm input 1-dB compression point. The 2.7-mm2 transmitter IC achieves an output 1-dB compression of -2.5 dBm at 5.7 GHz with 33.4-dB (image) sideband rejection by using an integrated quadrature voltage-controlled oscillator. Operating from a 3-V supply, the power consumptions for the receiver and transmitter are 114 and 120 mW, respectively  相似文献   

4.
A fully integrated CMOS direct-conversion 5-GHz transceiver with automatic frequency control is implemented in a 0.18-/spl mu/m digital CMOS process and housed in an LPCC-48 package. This chip, along with a companion baseband chip, provides a complete 802.11a solution The transceiver consumes 150 mW in receive mode and 380 mW in transmit mode while transmitting +15-dBm output power. The receiver achieves a sensitivity of better than -93.7dBm and -73.9dBm for 6 Mb/s and 54 Mb/s, respectively (even using hard-decision decoding). The transceiver achieves a 4-dB receive noise figure and a +23-dBm transmitter saturated output power. The transmitter also achieves a transmit error vector magnitude of -33 dB. The IC occupies a total die area of 11.7 mm/sup 2/ and is packaged in a 48-pin LPCC package. The chip passes better than /spl plusmn/2.5-kV ESD performance. Various integrated self-contained or system-level calibration capabilities allow for high performance and high yield.  相似文献   

5.
A 5-GHz CMOS double-quadrature front-end receiver for wireless LAN application is proposed. In the receiver, a one-stage RLC phase shifter is used to generate quadrature RF signals. Implemented in 0.18 /spl mu/m CMOS technology, the receiver chip can achieve 50.6-dB image rejection with power dissipation of 22.4 mW at 1.8-V voltage supply.  相似文献   

6.
This work presents the design and implementation of a 2-V cellular transceiver front-end in a standard 0.25-μm CMOS technology. The prototype integrates a low-IF receiver (low noise amplifier, I/Q mixers, and VGAs) and a direct-upconversion transmitter (I/Q mixers and pre-amplifier) on a single die together with a complete phase-locked loop, including a 64/79 prescaler, a fully integrated loop filter, and a quadrature voltage controlled oscillator with on-chip inductors. Design trade-offs have been made over the boundaries of the different building blocks to optimize the overall system performance. All building blocks feature circuit topologies that enable comfortable operation at low voltage. As a result, the IC operates from a power supply of only 2 V, while consuming 191 mW in receiver (RX) mode and 160 mW in transmitter (TX) mode. To build a complete transceiver system for 1,8-GHz cellular communication, only an antenna, an antenna filter, a power amplifier, and a digital baseband chip must be added to the analog front-end. This work shows the potential of achieving the analog performance required for the class I/II DCS-1800 cellular system in a standard 0.25-μm CMOS technology, without tuning or trimming  相似文献   

7.
This paper describes a radio-frequency receiver targeting spread-spectrum wireless local-area-network applications in the 2.4-GHz band. Based on a direct-conversion architecture, the receiver employs partial channel selection filtering, dc offset removal, and baseband amplification. Fabricated in a 0.6-μm CMOS technology, the receiver achieves a noise figure of 8.3 dB, IP3 of -9 dBm, IP2 of +22 dBm, and voltage gain of 34 dB while dissipating 80 mW from a 3-V supply  相似文献   

8.
An On-Chip Loopback Block for RF Transceiver Built-In Test   总被引:1,自引:0,他引:1  
This brief addresses the realization of an on-chip block for built-in testing of RF transceivers with the loopback method. Design issues and measurement results are discussed, giving practical insights into closing the signal path between transmitter (Tx) and receiver (Rx) sections. The circuit is intended for cost-efficient production testing of RF front-end blocks with on-chip power detectors and bit-error-rate analysis at baseband frequencies for integrated transceivers operating in the 1.9- to 2.4-GHz range. It can provide 40-200 MHz Tx-Rx frequency shifting and 26-42 dB continuous attenuation while consuming a 0.052-mm2 die area in 0.13-mum CMOS technology and ~ 12 mW of power when activated in test mode.  相似文献   

9.
A 2.125-Gb/s transmitter meeting the specifications of the emerging ANSI Fiber Channel standard has been developed using BiCMOS technology. This transmitter features (1) a fully bipolar 10:1 multiplexer (MUX) and a 2.125-GHz retimer for high-accuracy transmission of data, (2) an emitter-coupled logic (ECL) CMOS analog phase-locked loop, (3) pure ECL-level output for direct connection to the currently available optical modules, and (4) BiCMOS process technology that includes 0.25-μm CMOS devices and 20-GHz bipolar devices. The LSI serializes 32-bit-wide, 53.125-Mb/s data into 2.125-Gb/s data through a CMOS 8B10B encoder. The chip area is 3×2 mm2, and the power dissipation is 860 mW  相似文献   

10.
A low power 2.4-GHz complementary metal oxide semiconductor (CMOS) receiver front-end using highly linear mixer based on current amplification and mixing is reported. In the proposed mixer, linearity is greatly improved by using current mirror amplifier and transconductance linearization using multiple gated transistors. Single IF direct conversion receiver (DCR) architecture is used to achieve higher level of integration and to relax the problem of DCR. The fully integrated receiver front end is fabricated in 0.18-/spl mu/m CMOS technology and HP3 of -9 dBm with a gain of 32 dB and noise figure of 6.5 dB are obtained at 8.8 mW power consumption.  相似文献   

11.
This paper presents a single-chip SONET OC-192 transceiver (transmitter and receiver) fabricated in a 90-nm mixed-signal CMOS process. The transmitter consists of a 10-GHz clock multiplier unit (CMU), 16:1 multiplexer, and 10-Gb/s output buffer. The receiver consists of a 10-Gb/s limiting input amplifier, clock and data recovery circuit (CDR), 1:16 demultiplexer, and drivers for low-voltage differential signal (LVDS) outputs. Both transmit and receive phase-locked loops employ a 10-GHz on-chip LC voltage-controlled oscillator (VCO). This transceiver exceeds all SONET OC-192 specifications with ample margin. Jitter generation at 10.66-Gb/s data rate is 18 mUI/sub pp/ (unit interval, peak-to-peak) and jitter tolerance is 0.6 UI/sub pp/ at 4-MHz jitter frequency. This transceiver requires 1.2V for the core logic and 1.8 V for input/output LVDS buffers. Multiple power supply domains are implemented here to mitigate crosstalk between receiver and transmitter. The overall power dissipation of this chip is 1.65 W.  相似文献   

12.
A CMOS ultra-wideband impulse radio (UWB-IR) transceiver was developed in 0.18-/spl mu/m CMOS technology. It can be used for 1-Mb/s data communications as well as for precise range finding within an error of /spl plusmn/2.5 cm. The power consumptions of the transmitter and receiver for data communication are 0.7 and 4.0 mW, respectively. When an LNA operates intermittently through bias switching, the power consumption of the transceiver is only 1 mW. The range for data communication is 1 m with BER of 10/sup -3/. For ranging applications, the transmitter can reduce the power to 0.7 /spl mu/W for 1k pulses per second, and the receiver consumes little power. The transceiver design, all-digital transmitter, and intermittent circuit operation at the receiver reduce the power consumption dramatically, which makes the transceiver well suited for applications like sensor networks. The electronic field intensity is lower than 35 /spl mu/V/m, and thus the UWB system can be operated even under the current Japan radio regulations.  相似文献   

13.
提出了一种高速低功耗的低压差分接口电路,它可以应用于CPU,LCD,FPGA等需要高速接口的芯片中.在发送端,一个稳定的参考电压和共模反馈电路被应用于低压差分电路中,它使得发送端能够克服电源、温度以及工艺引起的波形变化.在接收端采用了轨到轨的放大器结构,它町以工作到1.6Gb/s.芯片设计加工采用的是0.18μm CMOS工艺,芯片测试结果表明,整个发送接收端数据传输速率可以达到1.6Gb/s,同时发送和接收端的功耗分别是35和6mW.  相似文献   

14.
Full-CMOS 2-GHz WCDMA direct conversion transmitter and receiver   总被引:1,自引:0,他引:1  
This paper presents a full-CMOS transmitter and receiver for 2.0-GHz wide-band code division multiple access with direct conversion mixers and a DC-offset cancellation scheme. The direct conversion scheme combined with a multiphase sampling fractional-N prescaler alleviates the problems of the direct conversion transmitter and receiver. Digital gain control is merged into the baseband filters and variable-gain amplifiers to optimize the linearity of the system, reduce the noise, and improve the sensitivity. Variable-gain amplifiers with DC-offset cancellation loop eliminate the DC-offset in each stage. The chip implemented in 0.35-/spl mu/m CMOS technology shows the experimental results of 6 dBm maximum output power with 38-dB adjacent channel power rejection ratio at 1.92 MHz, 50-dB dynamic range, and 363-mW power consumption in the transmitter. The receiver shows -115.4 dBm sensitivity, a 4.0-dB noise figure, and a dynamic range of 80-dB with 396-mW power consumption.  相似文献   

15.
This paper presents the design of a 10 Gb/s PAM2, 20 Gb/s PAM4 high speed low power wire-line transceiver equalizer in a 65 nm CMOS process with 1 V supply voltage. The transmitter occupies 430×240 μm2 and consumes 50.56 mW power. With the programmable 5-order pre-emphasis equalizer, the transmitter can compensate for a wide range of channel loss and send a signal with adjustable voltage swing. The receiver equalizer occupies 146×186 μm2 and consumes 5.3 mW power.  相似文献   

16.
A single-chip dual-band 5.15-5.35-GHz and 2.4-2.5-GHz zero-IF transceiver for IEEE 802.11a/b/g WLAN systems is fabricated on a 0.18-/spl mu/m CMOS technology. It utilizes an innovative architecture including feedback paths that enable digital calibration to help eliminate analog circuit imperfections such as transmit and receive I/Q mismatch. The dual-band receive paths feature a 4.8-dB (3.5-dB) noise figure at 5.25 GHz (2.45 GHz). The corresponding sensitivity at 54 Mb/s operation is -76 dBm for 802.11a and -77 dBm for 802.11g, both referred at the input of the chip. The transmit chain achieves output 1-dB compression at 6 dBm (9 dBm) at 5 GHz (2.4 GHz) operation. Digital calibration helps achieve an error vector magnitude (EVM) of -33 dB (-31 dB) at 5 GHz (2.4 GHz) while transmitting -4 dBm at 54Mb/s. The die size is 19.3 mm/sup 2/ and the power consumption is 260 mW for the receiver and 320 mW (270 mW) for the transmitter at 5 GHz (2.4 GHz) operation.  相似文献   

17.
A fully CMOS integrated RF transceiver for ubiquitous sensor networks in sub-gigahertz industrial, scientific, and medical (ISM)-band applications is implemented and measured. The integrated circuit is fabricated in 0.18-mum CMOS technology and packaged in leadless plastic chip carrier (LPCC) package. The fully monolithic transceiver consists of a receiver, a transmitter, and an RF synthesizer with on-chip voltage-controlled oscillator. The chip fully complies with the IEEE 802.15.4 wireless personal area network in sub-gigahertz mode. The cascaded noise figure of the overall receiver is 9.5 dB and the overall transmitter achieves less than 6.3% error vector magnitude for 40 kb/s mode. The chip uses 1.8-V power supply and the power consumption is 25 mW for reception mode and 29 mW for transmission mode  相似文献   

18.
This letter presents an implementation to reduce area occupation in designing voltage-controlled oscillators (VCOs) using a filtering technique. We applied a helical inductor to the noise filter in a 2.5-GHz CMOS VCO to reduce area occupation. Because a helical inductor has less area occupation, a small silicon area was achieved. This VCO operates in the 2.5-GHz band with power consumption of 1.5 mW and phase noise of -119.2 dBc/Hz at 1-MHz. Our VCO displays an excellent performance of phase noise in relation to power consumption.  相似文献   

19.
A 1-Mb/s 916.5-MHz on-off keying (OOK) transceiver for short-range wireless sensor networks has been designed in a 0.18-mum CMOS process. The receiver has an envelope detection based architecture with a highly scalable RF front-end. Untuned RF circuits are leveraged and optimized in the receiver to achieve superior energy efficiency compared to tuned RF circuits. The receiver power consumption scales from 0.5 mW to 2.6 mW, with an associated sensitivity of -37 dBm to -65 dBm at a BER of 10 -3. The transmitter consumes 3.8 mW to 9.1 mW with output power from -11.4 dBm to -2.2 dBm. The receiver achieves a startup time of 2.5 mus, allowing for efficient duty cycling  相似文献   

20.
Integrated Phased Array Systems in Silicon   总被引:3,自引:0,他引:3  
Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-/spl mu/m silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-/spl mu/m CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号