首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

2.
In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

3.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

4.
In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

5.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

6.
M. M. Cecchi 《Calcolo》1967,4(3):363-368
The numerical integration of integrals of the type dx is carried out through an approximate quadrature formula of the Gauss type where the abscissasx i and the weighting coefficientsA i are evaluated with the requirement that the above formula be exact when thef(x) are polynomials of the highest possible degree.   相似文献   

7.
LetA be any real symmetric positive definiten×n matrix, and κ(A) its spectral condition number. It is shown that the optimal convergence rate $$\rho _{SOR}^* = \mathop {\min }\limits_{0< \omega< 2} \rho (M_{SOR,\omega } )$$ of the successive overrelaxation (SOR) method satisfies $$\rho _{SOR}^* \leqslant 1 - \frac{1}{{\alpha _n \kappa (A)}}, \alpha _n \approx \log n.$$ This worst case estimate is asymptotically sharp asn→∞. The corresponding examples are given by certain Toeplitz matrices.  相似文献   

8.
K. J. Förster  K. Petras 《Calcolo》1994,31(1-2):1-33
For ultraspherical weight functions ωλ(x)=(1–x2)λ–1/2, we prove asymptotic bounds and inequalities for the variance Var(Q n G ) of the respective Gaussian quadrature formulae Q n G . A consequence for a large class of more general weight functions ω and the respective Gaussian formulae is the following asymptotic result, $$\mathop {lim}\limits_{n \to \infty } n \cdot Var\left( {Q_n^G } \right) = \pi \int_{ - 1}^1 {\omega ^2 \left( x \right)\sqrt {1 - x^2 } dx.} $$   相似文献   

9.
We prove results on exact asymptotics of the probabilities
$P\left\{ {\int\limits_0^1 {e^{\varepsilon \xi (t)} dt > b} } \right\},P\left\{ {\int\limits_0^1 {e^{\varepsilon |\xi (t)|} dt > b} } \right\},\varepsilon \to 0,$
where b > 1, for two Gaussian processes ξ(t), namely, a Wiener process and a Brownian bridge. We use the Laplace method for Gaussian measures in Banach spaces. Evaluation of constants is reduced to solving an extreme value problem for the rate function and studying the spectrum of a second-order differential operator of the Sturm-Liouville type with the use of Legendre functions.
  相似文献   

10.
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, yk=1|x k ? y k |2?k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 ? x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2 n r ? j), j = 0,1,…, 2 n ? 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.  相似文献   

11.
New hybrid algorithms for matrix multiplication are proposed that have the lowest computational complexity in comparison with well-known matrix multiplication algorithms. Based on the proposed algorithms, efficient algorithms are developed for the basic operation \( D = C + \sum\limits_{l =1}^{\xi} A_{l} B_{l}\) of cellular methods of linear algebra, where A, B, and D are square matrices of cell size. The computational complexity of the proposed algorithms is estimated.  相似文献   

12.
P. Wynn 《Calcolo》1971,8(3):255-272
The transformation (*) $$\sum\limits_{\nu = 0}^\infty {t_\nu z^\nu \to } \sum\limits_{\nu = 0}^\infty {\left\{ {\sum\limits_{\tau = 0}^{h - 1} {z^\tau } \Delta ^\nu t_{h\nu + \tau } + \frac{{z^h }}{{1 - z}}\Delta ^\nu t_{h(\nu + 1)} } \right\}} \left( {\frac{{z^{h + 1} }}{{1 - z}}} \right)^\nu$$ whereh≥0 is an integer and Δ operates upon the coefficients {t v } of the series being transformed, is derived. Whenh=0, the above transformation is the generalised Euler transformation, of which (*) is itself a generalisation. Based upon the assumption that \(t_\nu = \int\limits_0^1 {\varrho ^\nu d\sigma (\varrho ) } (\nu = 0, 1,...)\) , where σ(?) is bounded and non-decreasing for 0≤?≤1 and subject to further restrictions, a convergence theory of (*) is given. Furthermore, the question as to when (*) functions as a convergence acceleration transformation is investigated. Also the optimal valne ofh to be taken is derived. A simple algorithm for constructing the partial sums of (*) is devised. Numerical illustrations relating to the case in whicht v =(v+1) ?1 (v=0,1,...) are given.  相似文献   

13.
P. Brianzi  L. Rebolia 《Calcolo》1982,19(1):71-86
A numerical performance of integral form for the linear ordinary differential equations $$y^{(n)} = \sum\limits_{i = 0}^{n - 2} { a_{i + 2} (x) y^{(n - 2 - i)} (x)}$$ is proved. Three numerical experiments are also given.  相似文献   

14.
For a finite alphabet ∑ we define a binary relation on \(2^{\Sigma *} \times 2^{2^{\Sigma ^* } } \) , called balanced immunity. A setB ? ∑* is said to be balancedC-immune (with respect to a classC ? 2Σ* of sets) iff, for all infiniteL εC, $$\mathop {\lim }\limits_{n \to \infty } \left| {L^{ \leqslant n} \cap B} \right|/\left| {L^{ \leqslant n} } \right| = \tfrac{1}{2}$$ Balanced immunity implies bi-immunity and in natural cases randomness. We give a general method to find a balanced immune set'B for any countable classC and prove that, fors(n) =o(t(n)) andt(n) >n, there is aB εSPACE(t(n)), which is balanced immune forSPACE(s(n)), both in the deterministic and nondeterministic case.  相似文献   

15.
We show in this note that the equation αx1 + #x22EF; +αxp?ACβy1 + α +βyq where + is an AC operator and αx stands for x+...+x (α times), has exactly $$\left( { - 1} \right)^{p + q} \sum\limits_{i = 0}^p {\sum\limits_{j = 0}^q {\left( { - 1} \right)^{1 + 1} \left( {\begin{array}{*{20}c} p \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} q \\ j \\ \end{array} } \right)} 2^{\left( {\alpha + \begin{array}{*{20}c} {j - 1} \\ \alpha \\ \end{array} } \right)\left( {\beta + \begin{array}{*{20}c} {i - 1} \\ \beta \\ \end{array} } \right)} } $$ minimal unifiers if gcd(α, β)=1.  相似文献   

16.
We apply the theory of products of random matrices to the analysis of multi-user communication channels similar to the Wyner model, which are characterized by short-range intra-cell broadcasting. We study fluctuations of the per-cell sum-rate capacity in the non-ergodic regime and provide results of the type of the central limit theorem (CLT) and large deviations (LD). Our results show that CLT fluctuations of the per-cell sum-rate C m are of order \(1/\sqrt m \), where m is the number of cells, whereas they are of order 1/m in classical random matrix theory. We also show an LD regime of the form P(|C m ? C| > ?) ≤ e ? with α = α(?) > 0 and C = \(\mathop {\lim }\limits_{m \to \infty } \) C m , as opposed to the rate \(e^{ - m^2 \alpha } \) in classical random matrix theory.  相似文献   

17.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

18.
We describe an extension to our quantifier-free computational logic to provide the expressive power and convenience of bounded quantifiers and partial functions. By quantifier we mean a formal construct which introduces a bound or indicial variable whose scope is some subexpression of the quantifier expression. A familiar quantifier is the Σ operator which sums the values of an expression over some range of values on the bound variable. Our method is to represent expressions of the logic as objects in the logic, to define an interpreter for such expressions as a function in the logic, and then define quantifiers as ‘mapping functions’. The novelty of our approach lies in the formalization of the interpreter and its interaction with the underlying logic. Our method has several advantages over other formal systems that provide quantifiers and partial functions in a logical setting. The most important advantage is that proofs not involving quantification or partial recursive functions are not complicated by such notions as ‘capturing’, ‘bottom’, or ‘continuity’. Naturally enough, our formalization of the partial functions is nonconstructive. The theorem prover for the logic has been modified to support these new features. We describe the modifications. The system has proved many theorems that could not previously be stated in our logic. Among them are:
  • ? classic quantifier manipulation theorems, such as $$\sum\limits_{{\text{l}} = 0}^{\text{n}} {{\text{g}}({\text{l}}) + {\text{h(l) = }}} \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{g}}({\text{l}})} + \sum\limits_{{\text{l = }}0}^{\text{n}} {{\text{h(l)}};} $$
  • ? elementary theorems involving quantifiers, such as the Binomial Theorem: $$(a + b)^{\text{n}} = \sum\limits_{{\text{l = }}0}^{\text{n}} {\left( {_{\text{i}}^{\text{n}} } \right)} \user2{ }{\text{a}}^{\text{l}} {\text{b}}^{{\text{n - l}}} ;$$
  • ? elementary theorems about ‘mapping functions’ such as: $$(FOLDR\user2{ }'PLUS\user2{ O L) = }\sum\limits_{{\text{i}} \in {\text{L}}}^{} {{\text{i}};} $$
  • ? termination properties of many partial recursive functions such as the fact that an application of the partial function described by $$\begin{gathered} (LEN X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F ({\rm E}QUAL X NIL) \hfill \\ {\rm O} \hfill \\ (ADD1 (LEN (CDR X)))) \hfill \\ \end{gathered} $$ terminates if and only if the argument ends in NIL;
  • ? theorems about functions satisfying unusual recurrence equations such as the 91-function and the following list reverse function: $$\begin{gathered} (RV X) \hfill \\ \Leftarrow \hfill \\ ({\rm I}F (AND (LISTP X) (LISTP (CDR X))) \hfill \\ (CONS (CAR (RV (CDR X))) \hfill \\ (RV (CONS (CAR X) \hfill \\ (RV (CDR (RV (CDR X))))))) \hfill \\ X). \hfill \\ \end{gathered} $$
  •   相似文献   

    19.
    Dr. M. Sieveking 《Computing》1972,10(1-2):153-156
    An algorithm is given to compute a solution (b 0, ...,b n) of $$\sum\limits_0^n {a_i t^i } \sum\limits_0^n {b_i t^i } \equiv \sum\limits_0^n {c_i t^i } (t^{n + 1} )$$ froma 0, ..., an, c0, ..., cn. It needs less than 7n multiplications, where multiplications with a skalar from an infinite subfield are not counted.  相似文献   

    20.
    The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg’s uncertainty relation and Schrödinger’s uncertainty relation. In this paper, we prove a Schrödinger-type uncertainty relation in terms of generalized metric adjusted skew information and correlation measure by using operator monotone functions, which reads,
    $$\begin{aligned} U_\rho ^{(g,f)}(A)U_\rho ^{(g,f)}(B)\ge \frac{f(0)^2l}{k}\left| \mathrm {Corr}_\rho ^{s(g,f)}(A,B)\right| ^2 \end{aligned}$$
    for some operator monotone functions f and g, all n-dimensional observables AB and a non-singular density matrix \(\rho \). As applications, we derive some new uncertainty relations for Wigner–Yanase skew information and Wigner–Yanase–Dyson skew information.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号