首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The change in the thickness and chemical states of the interfacial layer and the related electrical properties in Ta2O5 films with different annealing temperatures were investigated. The high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the 700 °C-annealed Ta2O5 film remained to be amorphous and had the thinnest interfacial layer which was caused by Ta-silicate decomposition to Ta2O5 and SiO2. In addition, the electrical properties were improved after annealing treatments. Our results suggest that an annealing treatment at 700 °C results in the highest capacitance and the lowest leakage current in Ta2O5 films due to the thinnest interfacial layer and non-crystallization.  相似文献   

2.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

3.
The tantalum oxide thin films with a thickness of 14 nm were deposited at 95°C by electron cyclotron resonance plasma enhanced chemical vapor deposition (ECRPECVD), and annealed at various temperatures (700∼850°C) in O2 and N2 ambients. The microstructure and composition of the tantalum oxide thin films and the growth of interfacial silicon oxide layer were investigated and were related to the electrical characteristics of the film. Annealing in an O2 ambient led to a high dielectric constant (εr(Ta2O5) = 24) as well as a small leakage current (Ebd = 2.3 MV/cm), which were due to the improved stoichiometry and the decreased impurity carbon content. Annealing in an N2 ambient resulted in poor and nonuniform leakage current characteristics. The as-deposited tantalum oxide films were crystallized into δ-Ta2O5 after annealing at above 750°C regardless of the ambient. The leakage current of the film abruptly increased after annealing at 850°C probably because of the stress caused by thermal expansion or contraction.  相似文献   

4.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of thermal thin film (15-35 nm) Ta2O5 capacitors has been investigated. The absolute level of leakage currents, breakdown fields, mechanism of conductivity, dielectric constant values are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode deposition process-induced defects acting as electrically active centers. The dielectric constant values are in the range 12-26 in dependence on both Ta2O5 thickness and gate material. The results show that during deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W, and the leakage current is 5-7 orders of magnitude lower as compared to Al and TiN-electroded capacitors. The high level of leakage current for TiN and Al gate capacitors are related to the radiation defects generated in Ta2O5 during sputtering of TiN, and damaged interface at the electrode due to a reaction between Al and Ta2O5, respectively. It is demonstrated that the quality of the top electrode affects the electrical characteristics of the capacitors and the sputtered W is found to be the best. The sputtered W gate provides Ta2O5 capacitors with a good quality: the current density <7 × 10−10 A/cm2 at 1 V (0.7 MV/cm, 15 nm thick Ta2O5). W deposition is not accompanied by an introduction of a detectable damage leading to a change of the properties of the initial as-grown Ta2O5 as in the case of TiN electrode. Damage introduced during TiN sputtering is responsible for current deterioration (high leakage current) and poor breakdown characteristics. It is concluded that the sputtered W top electrode is a good candidate as a top electrode of storage capacitors in dynamic random access memories giving a stable contact with Ta2O5, but sputtering technique is less suitable (favorable) for deposition of TiN as a metal electrode due to the introduction of radiation defects causing both deterioration of leakage current and poor breakdown characteristics.  相似文献   

5.
The influence of the rapid thermal annealing (RTA) in vacuum at 1000 °C on the leakage current characteristics and conduction mechanisms in thermal Ta2O5 (7-40 nm) on Si has been studied. It was established that the effect of RTA depends on both the initial parameters of the films (defined by the oxidation temperature and film thickness) and annealing time (15-60 s). The RTA tends to change the distribution and the density of the traps in stack, and this reflects on the dielectric and leakage properties. The thinner the film and the poorer the oxidation, the more susceptible the layer to heating. The short (15 s) annealing is effective in improving the leakage characteristics of poorly oxidized samples. The RTA effect, however, is rather deleterious than beneficial, for the thinner layers with good oxygen stoichiometry. RTA modifies the conduction mechanism of Ta2O5 films only in the high-field region. The annealing time has strong impact on the appearance of a certain type of reactions upon annealing resulting to variation of the ratio between donors and traps into Ta2O5, causing different degree of compensation, and consequently to domination of one of the two mechanisms at high fields (Schottky emission or Poole-Frenkel effect). Trends associated with simultaneous action of annealing and generation of traps during RTA processing, and respectively the domination of one of them, are discussed.  相似文献   

6.
The properties of TiN/TiSi2 bilayer formed by rapid thermal annealing (RTA) in an NH3 ambient after the titanium film is deposited on the silicon substrate is investigated. It is found that the formation of TiN/TiSi2 bilayer depends on the RTA temperature and a competitive reaction for the TiN/TiSi2 bilayer occurs at 600°C. Both the TiN and TiSi2 layers represent titanium-rich films at 600°C anneal. The TiN layer has a stable structure at 700°C anneal while the TiSi2 layer has C49 and C54 phase. Both the TiN and TiSi2 layers have stable structures and stoichiometries at 800°C anneal. When the TiN/TiSi2 bilayer is formed, the redistribution of boron atoms within the TiSi2 layer gets active as the anneal temperature is increased. According to secondary ion mass spectroscopy analysis, boron atoms pile up within the TiN layer and at the TiSi2−Si interface. The electrical properties for n+ and p+ contacts are investigated. The n+ contact resistance increases slightly with increasing annealing temperature but the p+ contact resistance decreases. The leakage current indicates degradation of the contact at high annealing temperature for both n+ and p+ junctions.  相似文献   

7.
The as-deposited and annealed radio frequency reactive magnetron sputtered tantalum oxide (Ta2O5) films were characterized by studying the chemical binding configuration, structural and electrical properties. X-ray photoelectron spectroscopy and X-ray diffraction analysis of the films elucidate that the film annealed at 673 K was stoichiometric with orthorhombic β-phase Ta2O5. The dielectric constant values of the tantalum oxide capacitors with the sandwich structure of Al/Ta2O5/Si were in the range from 14 to 26 depending on the post-deposition annealing temperature. The leakage current density was <20 nA cm?2 at the gate bias voltage of 0.04 MV/cm for the annealed films. The electrical conduction mechanism observed in the films was Poole–Frenkel.  相似文献   

8.
Ta2O5 films with a buffer layer of silicon nitride of various thicknesses were deposited on Si substrate by reactive sputtering and submitted to annealing at 700 °C in nitrogen atmosphere. The microstructure and the electrical properties of thin films were studied. It was found that with a buffer layer of silicon nitride the electrical properties of SixNy/Ta2O5 film can be improved than Ta2O5 film. When the thickness of the buffer layer was 3 nm, the SixNy/Ta2O5 film has the highest dielectric constant of 27.4 and the lowest leakage current density of 4.61 × 10−5 A/cm2 (at −1 V). For the SixNy (3 nm)/Ta2O5 film, the conduction mechanism of leakage current was also analyzed and showed four types of conduction mechanisms at different applied voltages.  相似文献   

9.
The formation of a SiO2 layer at the Ta2O5/Si interface is observed by annealing in dry O2 or N2 and the thickness of this layer increases with an increase in annealing temperature. Leakage current of thin (less than 40 nm thick) Ta2O5 films decreases as the annealing temperature increases when annealed in dry O2 or N2. The dielectric constant vs annealing temperature curve shows a maximum peak at 750 or 800° C resulting from the crystallization of Ta2O5. The effect is larger in thicker Ta2O5 films. But the dielectric constant decreases when annealed at higher temperature due to the formation and growth of a SiO2 layer at the interface. The flat band voltage and gate voltage instability as a function of annealing temperature can be explained in terms of the growth of interfacial SiO2. The electrical properties of Ta2O5 as a function of annealing conditions do not depend on the fabrication method of Ta2O5 but strongly depend on the thickness of Ta2O5 layer.  相似文献   

10.
In this paper, the physical and electrical properties of a TiNxOy/TiSi2 dual layer contact barrier are reported. The TiNxOy/TiSi2 barrier was formed by rapidly annealing a Ti thin film on Si in an N2 ambient. During this process, the Ti film surface reacts with N2 to form a TiNxOy skin layer and the bulk of the Ti film reacts with Si to form an underlying TiSi2 layer. The influences of rapid thermal anneal (RTA) conditions on the TiNxOy layer were investigated by varying the RTA temperature from 600 to 1100° C and cycle duration from 30 to 100 s. It is found that the resulting TiNxOy and TiSi2 layer thicknesses are dependent on RTA temperature and the starting Ti thickness. For a starting Ti thickness of 500Å, 150Å thick TiNxOy and 800Å thick TiSi2 are obtained after an RTA at 900° C for 30 s. The TiNxOy thickness is limited by a fast diffusion of Si into Ti to form TiSi2. When a Ti film is deposited on SiO2, Ti starts to react with SiO2 from 600° C and a significant reduction of the SiO2 thickness is observed after an RTA at 900° C. The resulting layer is composed of a surface TiNxOy layer followed by a complex layer of titanium oxide and titanium suicide. In addition, when Ti is depos-ited on TiSi2, thicker TiNxOy and TiSi2 layers are obtained after RTA. This is because the TiSi2 layer retards the diffusion of Si from the underlying substrate into the Ti layer. NMOSFETs were fabricated using the TiNxOy/TiSi2 as a contact barrier formed by RTA at 900° C for 30 s and a significant reduction of contact resistance was obtained. In addition, electromigration test at a high current density indicated that a significant improvement in mean time to failure (MTF) has been obtained with the barrier.  相似文献   

11.
The conduction mechanisms and the microstructure of rf sputtered Ta2O5 on Si, before and after oxygen annealing at high temperatures (873, 1123 K; 30 min) have been investigated. The as-deposited and annealed at 873 K layers are amorphous whereas crystalline Ta2O5 (orthorhombic β-Ta2O5 phase) was obtained after O2 treatment at 1123 K. The results (electrical, X-ray diffraction, transmission electron microscopy) reveal the formation of an interfacial ultrathin SiO2 layer under all technological regimes used. The higher (493 K) substrate temperature during deposition stimulates the formation of amorphous rather than crystalline SiO2. It is found that the oxygen heating significantly reduces the oxide charge (Qf<1010 cm−2) and improves the breakdown characteristics (the effect is more pronounced for the higher annealing temperature). It is accompanied by an increase of the effective dielectric constant (up to 37 after 1123 K treatment). It is established that the influence of the oxygen treatment on the leakage current is different depending on the film thickness, namely: a beneficial effect for the thinner and a deterioration of leakage characteristics for thicker (80 nm) films. A leakage current density as low as 10−7 A/cm2 at 1 MV/cm applied field for 26 nm annealed layers has been obtained. The current reduction is considered to be due to a removal by annealing of certain structural nonperfections present in the initial layers. Generally, the results are discussed in terms of simultaneous action of two opposite and competing processes taking place at high temperatures––a real annealing of defects and an appearance of a crystal phase and/or a neutral traps generation. The contribution of the neutral traps also is involved to explain the observed weaker charge trapping in the as-fabricated films compared to the annealed ones.The conduction mechanism of the as-deposited films is found to be of Poole–Frenkel (PF) type for a wide range of applied fields. A change of the conduction mechanism for the annealed films at medium fields (0.8–1.3 MV/cm) is established. This transition from PF process to the Schottky emission limited current is explained with an annealing of bulk traps (oxygen vacancies and nonperfect bonds). It is concluded that the dominant conduction mechanism in the intermediate fields can be effectively controlled by appropriate technological steps.  相似文献   

12.
The influence of Hf-doping on the leakage currents and conduction mechanisms in Ta2O5 stacks is investigated. The current conduction mechanisms as well as the traps participating in them are identified by temperature dependent current–voltage measurements. A strong dependence of the dominant conduction mechanism on the doping and the layer thickness is established. Hf-doping alters substantially the dominant mechanism of conductivity in pure Ta2O5. Conduction in Hf-doped Ta2O5 is performed through shallower traps as compared to the pure Ta2O5, which results in a higher leakage current in the former stacks. A certain trap can assist in different conduction processes depending on the layer thickness and the applied field. It is found that Hf-doping passivates oxygen vacancies in Ta2O5 and the deep traps level associated with this defect is not observed in Hf-doped samples. The origin of the detected traps is also commented.  相似文献   

13.
Extended Abstract Thin film tantalum oxide capacitors have been used extensively in the electronic and the telecommunication industry.1 One of the most important parameters that measures the quality of the capacitor is its leakage current. In spite of a large amount of effort to study the conduction mechanism in Ta2O5 films, even the basic question of whether conduction is electrode-limited or bulk-limited has not been satisfactorily answered.2 In a previous publication,3 it was shown that the conduction current in a metal-Ta2O5-metal device is independent of the work function of the metal electrode, for r-f sputtered Ta2O5 films.4 Furthermore, we have shown that there exists drastic differences in the magnitude of the conduction current through M-I-M devices with similar Ta205/metal interfaces but progressively different bulk oxide.5 Therefore, the conduction mechanism cannot be electrode-limited even if interface irregularities are postulated to exist.6 In this talk, direct evidence that the conduction mechanism is indeed bulk-limited will be presented. Detailed results will be published elsewhere.5  相似文献   

14.
15.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of Ta2O5 stack capacitors has been investigated. The leakage currents, breakdown fields, mechanism of conductivity and dielectric constant are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode-deposition-process-induced defects acting as electrically active centers. During deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W. The sputtered W top electrode is a good candidate as a gate of storage capacitors in DRAMs, but sputtering technique is less suitable for deposition of TiN due to the introduction of radiation defects causing deterioration of leakage current. Although some reaction between Al and Ta2O5 occurs, the resulting electrical properties of the capacitors are still acceptable.  相似文献   

16.
Effect of annealing temperature on the characteristics of sol–gel-driven Ta ax La(1?a)x O y thin film spin-coated on Si substrate as a high-k gate dielectric was studied. Ta ax La(1?a)x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3x La0.7x Oy film had an amorphous structure. Therefore, Ta0.3x La0.7x O y film was chosen to continue the present studies. The morphology of Ta0.3x La0.7x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3x La0.7x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance–voltage (CV) and current density–voltage (JV) measurements and the Tauc method. The obtained results demonstrated that Ta0.3x La0.7x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10?6 A/cm2 at 1 V).  相似文献   

17.
硅基高密度电容器是利用半导体3D深硅槽技术和应用高介电常数(高K)材料制作的电容。相比钽电容和多层陶瓷电容(MLCC),硅基电容具有十年以上的寿命、工作温度范围大、容值温度系数小以及损耗低等优点。文章研究原子层沉积(ALD)制备的Al2O3薄膜的介电特性,通过优化ALD原子沉积温度和退火工艺,发现在沉积温度420℃和O3气氛退火5 min下,ALD生长的Al2O3薄膜击穿强度可大于0.7 V/nm,相对介电常数达8.7。制成的硅基电容器电容密度达到50 nF/mm2,漏电流小于5 nA/mm2。  相似文献   

18.
In the present study, UV light activated gas sensor was investigated for Al/Al2O3/p-Si and Al/TiO2/Al2O3/p-Si samplesby atomic layer deposition method (ALD). Generally, in order to obtain the sensing performance, traditional metal oxide semiconductor gas sensors are operated at 100–400 °C. However, this temperature range limits their applications to flammable gases, and causes high power consumption. It is important to note that sensing performance experiments should have been performed at room temperature. With the support of UV light, gas sensors do not need to be heated and they can work at room temperature easily. For this purpose, electrical measurements have been performed on sensing performance with and without UV irradiation for dedection of NO2 gas. With the help of UV irradition, we obtained good sensitivity at the room temperature for Al/TiO2/Al2O3/p-Sistructure but under the same conditions no result was obtained for Al/Al2O3/p-Si structure. Without UV irradiation, there was no sensitivity for both.We observed that increasing of sensitivities at the room temperature show a direct effect of the light on the adsorbed oxygen ions. According to the relation of photocatalytic reaction and photoactivated gas sensing process, we concluded that TiO2 might be an acceptable sensor for detection of nitrogen dioxide (NO2) at room temperature under UV illumination.  相似文献   

19.
We demonstrate a new flexible metal-insulator-metal capacitor using 9.5-nm-thick ZrO2 film on a plastic polyimide substrate based on a simple and low-cost sol-gel precursor spin-coating process. The surface morphology of the ZrO2 film was investigated using scan electron microscope and atomic force microscope. The as-deposited ZrO2 film under suitable treatment of oxygen (O2) plasma and then subsequent annealing at 250 °C exhibits superior low leakage current density of 9.0 × 10−9 A/cm2 at applied voltage of 5 V and maximum capacitance density of 13.3 fF/μm2 at 1 MHz. The as-deposited sol-gel film was completely oxidized when we employed O2 plasma at relatively low temperature and power (30 W), hence enhancing the electrical performance of the capacitor. The shift (Zr 3d from 184.1 eV to 184.64 eV) in X-ray photoelectron spectroscopy of the binding energy of the electrons towards higher binding energy; clearly indicates that the O2 plasma reaction was most effective process for the complete oxidation of the sol-gel precursor at relatively low processing temperature.  相似文献   

20.
The paper presents results of the effect of microwave irradiation at room temperature on the properties of thin layers of tantalum pentoxide deposited on Si by rf sputtering. Electrical characterization is performed in conjunction with Auger electron spectroscopy and atomic force microscopy. Among exposure times used (1; 5; 10 s), treatment of about 5 s shows the best promise as an annealing step––an improvement of number of parameters of the system Ta2O5–Si is established (dielectric constant and surface morphology; stoichiometry and microstructure of both the bulk oxide and the interfacial transition region; electrical characteristics in terms of oxide charge density, leakage current and breakdown fields). At the same time the microwave irradiation is not accompanied by crystalization effects in Ta2O5 and/or additional oxidation of Si substrate. It is concluded that the short-time microwave irradiation can be used as an annealing process for Ta2O5–Si microstructures and it has a potential to replace the high-temperature annealing processes for high-k insulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号